воскресенье, 15 ноября 2009 г.

Расширенный фенотип Послесловие

Дэниел Деннетт



Почему философ пишет послесловие к этой книге? Расширенный фенотип – это наука или философия? И то, и другое; это конечно наука, но также и то, чем философия должна быть, но лишь периодически ею является: тщательно аргументированная дискуссия, которая открывает наши глаза на новые перспективы, разъясняющая то, что было темно и плохо понятно, и предоставляющая нам новый взгляд на предметы, которые мы полагали уже хорошо известными. Ричард Докинз говорит в начале, что «расширенный фенотип не может быть гипотезой, проверяемой самой по себе, он лишь меняет наш взгляд на животных и растения, и тем самым может подтолкнуть нас к проверяемым гипотезам, о которых мы иначе и не мечтали бы. Что это за новое мышление? Это не только “точка зрения гена” ставшая знаменитой благодаря книге Докинза “Эгоистичный Ген» (1978). Стоя на этом фундаменте, он показывает, как наш традиционный взгляд на организмы должен быть заменён на более богатое видение, в котором граница между организмом и окружающей средой сначала растворяется, а затем (частично) восстанавливается на более глубокой основе. «Я покажу, что обычная логика генетической терминологии неизбежно приводит к заключению, что гены могут считаться имеющими расширенные фенотипические эффекты – эффекты, которым не нужно экспрессироваться на уровне любого конкретного носителя». Докинз не провозглашает революций; он использует «обычную логику генетической терминологии» чтобы доказать, что поразительное значение биологии уже лежит в руках. Новая «центральная теорема»: «Поведение животного стремится максимизировать выживание генов “этого поведения”, безотносительно к тому, находятся ли эти гены в теле данного животного, исполняющего его». Более ранняя разъясняющая рекомендация Докинза биологам принять «точку зрения гена», не подавалась как революция, а скорее как разъяснение по смещению внимания, которое уже начало распространяться в биологии в 1976 году. Более раннюю идею Докинза так нервозно и неконструктивно критиковали, что многие непрофессионалы и даже некоторые биологи оказывались не в состоянии оценить, насколько плодотворным было это смещение внимания. Мы теперь знаем, что геном, такой как человеческий, включает и подчиняется механизмам захватывающей дух хитрости и изобретательности – в нём не только молекулярные копировщики и редакторы, но также мошенники и стражи, призванные сразиться с ними, гувернантки и бродячие артисты, защитники от рэкета, наркоманов и других нечестных нано-агентов, из тех, чьи роботизированные конфликты и защиты появляются чудеса видимой природы. Плоды этого нового видения простираются далеко за пределы почти ежедневных заголовков новостей о нанесении ударов новых открытий то на одну частичку ДНК, то на другую. Почему и как мы стареем? Почему мы заболеваем? Как работает HIV? Как нейроны соединяются между собой в ходе эмбрионального развития мозга? Можем ли мы использовать паразитов вместо ядов для контроля за сельскохозяйственными вредителями? При каких условиях сотрудничество не только возможно, но и с высокой вероятностью возникнет и сохраняется? Все эти жизненные вопросы, как и многие другие, освещаются переосмыслением проблем в терминах процессов, описывающих возможности для репликаторов реплицироваться, и связанных с этим издержек и выгод.

Докинз как философ – прежде всего обеспокоен логикой объяснений, которые мы предлагаем для объяснения этих процессов и предсказания результатов. Но это научные объяснения, и Докинз (как и многие другие) хочет показать, что их смысл – есть научный результат, а не только убеждения интересной и оправдываемой философии. Так как ставки велики, то нам нужно убедиться, что это хорошая наука, и для этого мы должны проверить логику в полях, где собираются данные, где детали имеют значение, где даже весьма мелкая гипотеза об исследуемом феномене может быть практически проверена. «Эгоистичный ген» был написан для образованных непрофессиональных читателей, и лишь вскользь прошёлся по многим запутанным и техническим вопросам, которые для надлежащей научной оценки требовалось рассмотреть подробно. «Расширенный фенотип» был написан для профессионального биолога, но стиль Докинза столь изящен и ясен, что даже посторонние люди, готовые к энергичному использованию своих умственных способностей, могут легко следовать за аргументацией, и оценивать изящество выводов.

Как профессиональный философ, я не могу устоять от удовольствия добавить, что в книге есть несколько самых мастерских, выдержанных цепочек строгих доказательств, с которым я когда-либо сталкивался (глава 5, и последние четыре главы), множество изобретательных и ярких мысленных экспериментов. Здесь есть даже несколько побочных, но существенных вкладов в философские споры, которых трудно было ожидать от Докинза. Например, мысленный эксперимент о генетическом контроле сбора грунта термитами, может обеспечить полезное понимание теорий «умышленности» – особенно в дебатах, которые у меня были с Fodor, Dretske, и другими, относительно условий, при которых контент может быть приписан механистичности. На философском жаргоне – в генетике господствует чистая эксистенциональность, и это делает любое обозначение фенотипических черт «вопросом произвольного удобства», но не снижает по этой причине мотивированности нашей заинтересованности в привлечении внимания к большинству фактических сообщений о ситуации.

Для учёного здесь есть множество проверяемых предсказаний – о таких разнообразных вещах, как например, стратегии спаривания ос, эволюция объёма спермы, маскировочное поведение бабочек, и влияние паразитов на жуков и бокоплавов. Есть также свежие, ясные исследования проблем эволюции пола, условий внутригеномного конфликта (или геномных паразитов), и многих других, на первый взгляд противоречащих здравому смыслу вопросов. Его предостерегающий обзор ловушек, которых нужно избегать при размышлениях об эффекте зелёной бороды и его соседях должен быть настольной книгой любого, рискнувшего войти в эти запутанные дебри.

Эта книга была обязательным чтением любого серьёзного исследователя новой дарвинистской эволюционной теории уже в момент её первого появления в 1982; но один из поразительных эффектов от перечитывания её сегодня состоит в том, что она показывает ретроспективный снимок критики ледникового периода. Стивен Джей Гулд и Ричард Левонтин в Соединенных Штатах, и Стивен Роз в Великобритании, долго предупреждали мир об угрозе «генетического детерминизма», который может породить Докинзовская биологическая «точка зрения гена», и здесь в главе 2, мы находим всю эту современную критику, уже умело опровергнутую. Можно было бы подумать, что за почти двадцать лет его противники найдут какую-нибудь новую сторону вопроса, какую-нибудь новую трещину, в которую они могли бы вбить разрушительный клин или два, но, как заметил Докинз в другом контексте, где не было никакого развития – «здесь очевидно нет никакой доступной вариации для дальнейшего совершенствования» в их размышлениях. Что самое интересное – когда возникает необходимость ответа вашим самым неистовым критикам, то достаточно просто переиздать то, что вы сказали на эту тему много лет назад!

Что это за такой жуткий «генетический детерминизм»? Докинз цитирует определение Гулда 1978 года: «Если мы запрограммированы на что-то, то эти черты неотвратимы. Мы можем в лучшем случае канализовать их, но мы не можем изменить их силой воли, образованием, или культурой». Но если это – генетический детерминизм (а я не видел серьезно пересмотренных определений у критиков), тогда Докинз – никакой не генетический детерминист (как и не E. O. Уилсон, или, насколько я знаю, никто из известных социобиологов или эволюционных психологов). Как показывает Докинз в безупречном философском анализе, вся идея об «угрозе» «генетических» (или любых других) детерминизмов – настолько плохо продумана теми, кто размахивает термином, что её следовало бы воспринимать как плохую шутку, если бы из неё не делали скандал. Докинз только не опровергает обвинения в главе 2, но он диагностирует вероятные источники путаницы, возбуждающие такие обвинения, и как он замечает: «имеется страстное рвение неправильно истолковывать»[41] 41

Страстность, полагаю, проистекает из прочности подсознательного креационизма людей, см. моё примечание в главе 2 – А.П.


[Закрыть]. Как это ни грустно, но он прав.

Не всякая критика нового дарвинизма столь «незаконнорожденная». Критики говорят, что адаптационистские рассуждения соблазнительны; слишком легко принять бездоказательный довод «так исторически сложилось» за серьёзный эволюционный аргумент. Это верно, но Докинз в этой книге снова и снова умело показывает аргументированные рассуждения, которые так или иначе изгоняют нечестность. В главе 3 Докинз высказывает исключительно важный тезис о том, что изменение в окружающей среде не может изменить лишь степень успешности фенотипического эффекта; оно может изменить фенотипический эффект в целом! Но хватит о стандарте; скучно ложно обвинение в том, что «точка зрения гена» будет игнорировать или недооценивать вклад изменений (включая «широкомасштабные») в селективной окружающей среде. Факт остаётся фактом – адаптационисты часто игнорируют эти (и другие) осложнения, почему собственно книга справедливо выступает с предупреждениями против поверхностных рассуждений адаптационистов.

Обвинение в «редукционизме» – другой стандартный ярлык, навешиваемый на идею «точки зрения гена», однозначно неадекватно, когда нацелено на Докинза. Далёкая от ослепительных чудес более высоких уровней объяснения, идея расширенного фенотипа расширяет свою власть, устраняя кособокие ложные концепции. Как говорит Докинз, она позволяет нам переоткрыть организм. Почему, если фенотипическим эффектам не нужно чтить границу между организмом и «внешним» миром, – вообще существуют многоклеточные организмы? Очень хороший вопрос, и мало кто задал бы его, – или задал бы очень серьёзно – если бы не предложенная Докинзом перспектива. Каждый из нас, гуляя каждый день по белу свету, несёт в себе ДНК нескольких тысяч линий (паразиты, кишечная флора) в дополнение к нашей ядерной (и митохондриальной) ДНК, и все эти геномы вполне преуспевают в большинстве случаев. В конце концов, все они путешествуют с нами в одной лодке. Стадо антилоп, колония термитов, спаривающаяся пара птиц и их кладка яиц, человеческое общество – эти групповые сущности не более групповые, чем – в конце концов, человеческий индивидуум, с его более чем триллионом клеток, каждая из которых – потомок союза клетки-мамы и клетки-папы, которые начали этот групповой вояж. «На любом уровне – все репликаторы внутри носителя будут разрушены, если сам носитель разрушен. Потому-то естественный отбор, по крайней мере – до некоторой степени, будет благоволить репликаторам, вынуждающим своего носителям сопротивляться разрушению. В принципе это может относиться к группам организмов также как и к отдельным организмам, ибо если группа разрушена, то все гены внутри неё разрушены тоже». Значит гены – это всё, что имеет значение? Вовсе нет. «Нет ничего магического в Дарвиновской приспособленности в генетическом смысле слова. Не существует закона, дающего приоритет приспособленности, как фундаментальному максимизирующемуся количеству… Мем имеет свои собственные возможности репликации, и свои собственные фенотипические эффекты, и нет причин как-то связывать успех мема с генетическим успехом».

Логика дарвиновского мышления не ограничена генами. Всё больше и больше мыслителей начинают оценивать это: эволюционные экономисты, эволюционные этики, другие специалисты социальных наук, и даже физики и деятели искусства. Я воспринимаю это как философское открытие, и бесспорно ошеломляющее. Книга, которую вы держите в своих руках – один из лучших путеводителей по этому новому миру понимания.

Глоссарий
К книге Ричарда Докинза «Расширенный фенотип»

Термины даны в алфавитном порядке английских эквивалентов



Изначально эта книга предназначалась для биологов, которым не нужны никакие предметные глоссарии, но мне сказали, что хорошо бы растолковать ряд технических терминов, чтобы книга была доступнее для широкого читателя. Многие термины хорошо разъяснены в других местах (например, Уилсон 1975; Bodmer и Cavalli-Sforza 1976). Мои определения, конечно же, не улучшают уже имеющиеся, но я добавил личную оценку спорных слов или вопросов, прямо относящихся к предмету этой книги. Я старался избежать загромождения глоссария излишними и явными перекрестными ссылками, но многие слова, используемые на определениях, будут иметь свои собственные определения в другом месте этого глоссария.



Адаптация – технический термин, который приобрёл значение, довольно далёкое от обычного, близкого к значению слова «модификация». Вместо значения вроде «крылья сверчка адаптировались (изменились исходя из их изначальной функции органа полёта) для пения» он стал означать что-то вроде «стали хорошо выполнять функцию пения». Адаптация стала означать что-то вроде некоего признака организма, который «хорош» для чего-то. Хорош в каком смысле? Хорош для чего или для кого? Это сложные вопросы, которые подробно обсуждаются в данной книге.



Аллели – (полная форма: аллеломорфы) Каждый ген может занимать только конкретное место в хромосоме, свой локус. В любом локусе в рамках популяции могут существовать альтернативные формы гена. Эти альтернативы и называются аллелями друг друга. В этой книге подчёркивается, что аллели, в определённом смысле являются конкурентами друг друга, так как в ходе эволюции успешные аллели достигают численного превосходства над другими в том же самом локусе и во всех хромосомах популяции.



Аллометрия – диспропорция между размерами части тела и размером всего тела, наблюдающаяся или от особи к особи, или в ходе жизни одной особи. Например, у больших муравьёв (но маленьких людей) головы стремятся иметь очень большие размеры относительно тела; голова растёт с иной скоростью, чем всё тело. Обычно принято относительный размер части тела связывать с развитостью функции, которую она выполняет.



Аллопатическая теория видообразования – широко распространённый взгляд на эволюцию, заключающийся в том, что эволюционное размежевание популяций на отдельные виды (более не скрещивающиеся между собой), имеет место в географически разделённых местностях. Альтернативная симпатическая теория испытывает трудности в объяснении того, как зарождающиеся виды могут разделиться, если они всё время имеют возможность скрещиваться друг с другом, и тем самым смешивать свои геномы.



Альтруизм – биологи используют этот термин в ограниченном (многие полагают – в извращённом) смысле, лишь внешне связанным с бытовым пониманием. Некое создание, к примеру – павиана или ген – называют альтруистичными, если его поведение (не намерение) способствует благу другого создания, в ущерб благу самого себя. Различные оттенки понимания «альтруизма» вытекают из различных интерпретаций понятия «благо». Эгоизм применяется в строго противоположном смысле.



Анафаза – фаза цикла деления клетки, в которой парные хромосомы расходятся. В мейозе происходят последовательно два деления и соответственно две анафазы.



Амизогамия – половая система, при которой в ходе оплодотворения сливаются гаметы разного размера – крупная (женская) и мелкая (мужская). Противоположная система – изогамия при которой в ходе оплодотворения сливаются гаметы одинакового размера.



Антитела – молекулы белка, вырабатываемые в ходе иммунной реакции животных и нейтрализующие вторгшиеся в организм инородные тела (антигены).



Антигены – инородные тела, обычно молекулы белка, вызывающие формирование антител.



Апосемантизм – явление отпугивания врагов яркими цветами, или аналогичными сильными стимулами, неприятными или опасными организмами вроде ос. Действие феномена, как предполагается, основано на лёгкости обучения врагов избеганию этих организмов, однако имеются (не-непреодолимые) теоретические трудности объяснения того, как феномен мог развиться первоначально.



Ассортативное скрещивание – стремление особей выбирать половых партнёров, похожих (позитивное ассоциативное спаривание или гомогамия) или явно не похожих (негативное ассоциативное спаривание) на них самих. Многие используют это слово только в смысле «позитивное»



Аутосома – хромосома, не входящая в число половых хромосом.



Болдуина/Уоддингтона эффект – впервые описан Сполдингом (Spalding) в 1873 году. По большей части гипотетический эволюционный процесс (называемый также генетической ассимиляцией), с помощью которого естественный отбор может создавать иллюзию наследования приобретенных признаков. Отбор в пользу генетической предрасположенности вырабатывать признаки в ответ на стимулы окружающей среды, ведёт к развитию увеличенной чувствительности к этим же стимулам окружающей среды, и возможному освобождению от потребности в них. В книге я предположил, что мы могли бы культивировать расу спонтанно продуцирующих молоко самцов, из поколения в поколение поддерживая самцов с женскими гормонами и отбирая особей с увеличенной чувствительность к женским гормонам. Роль гормонов, или других факторов среды, состоит в выявлении скрытых генетических вариаций, которые в противном случае пребывали бы в бездействии.



Центральная догма молекулярной биологии – представление о том, что нуклеиновые кислоты работают как шаблоны для синтеза белков, но никак не наоборот. Шире говоря, догма о том, что гены оказывают влияние на форму тела, но форма тела никогда не транслируется назад, в генетический код – приобретённые признаки не наследуются.



Хромосома – одна из цепочек генов, имеющихся в клетке. Кроме собственно ДНК, обычно также содержит сложную поддерживающую белковую структуру. Хромосомы становятся видимыми в световой микроскоп лишь в определённые фазы жизни клетки, но их количество и длина определяются из статистических соображений, вытекающих из одного уже факта наследования (см сцепление). Хромосомы обычно присутствуют во всех клетках тела, даже если в данной клетке активна их незначительная часть. Обычно имеются две половые хромосомы в каждой диплоидной клетке, и какое-то количество аутосом (у людей – 44).



Цистрон – один из вариантов определения гена. В молекулярной генетике цистрон имеет точное определение в терминах специального экспериментального теста. В более широкой трактовке он используется для указания на участок хромосомы, ответственной за кодирование одной цепочки аминокислот в белке.



Кодон – триплет из единиц генетического года (нуклеотидов), определяющий синтез одной единицы (аминокислоты) в молекуле белка.



Клон – в цитологии (биологии клеток) – набор генетически идентичных клеток, целиком происходящий от одной клетки-предка. Человеческое тело – гигантский клон, состоящий примерно из 1015клеток. Этим словом также обозначается набор организмов, все клетки которых – члены одного клона. Таким образом, пара однояйцевых близнецов может называться членами одного клона.



Копа правило – эмпирическое обобщение, полагающее, что в ходе эволюции размеры тел обычно возрастают.



Кроссинговер – сложный процесс обмена генетическими фрагментами[42] 42

Гомологичных – А.П.


[Закрыть] хромосом в ходе мейоза. Результат этой перестановки – почти бесконечное разнообразие гамет.



Д'Арси Томпсона преобразования – графическая техника, показывающая, как очертания одного животного могут быть преобразованы в очертания другого посредством особого математического алгоритма. Д'Арси Томпсон мог нарисовать одно из двух очертаний на обычной миллиметровке, затем показывал «как этот образ мог быть (с какой-то точностью) преобразован в другой, если систему координат исказить неким специфическим образом».



Диплоид – клетку называют диплоидной, если она имеет парный набор хромосом; у организмов с половым размножением – по одной от каждого родителя. Организм называют диплоидным, если все клетки его тела являются диплоидными. Большинство организмов с половым размножением являются диплоидными.



Доминантность – ген называют доминирующим над одной из его аллелей, если он подавляет фенотипические проявления другой (рецессивной) аллели, когда обе они находятся вместе. Например, карие глаза доминируют над голубыми, и только особи с обоими генами синих глаз (рецессивные гомозиготы) будут действительно голубоглазыми; те же особи, у которых один ген определяет синий цвет глаз, другой – карий (гетерозиготы) будут неотличимы от тех, кто имеет два гена карих глаз (доминантные гомозиготы). Доминантность может быть неполной; в этом случае гетерозиготы проявляют промежуточные признаки в фенотипе. Антипод доминантности – рецессивность. Доминантность/рецессивность – это свойство фенотипического эффекта но не гена как такового: данный ген может быть доминантным в одном из его фенотипических проявлений, и рецессивным – в другом (см. плейотропия).



Эпигенез – слово, связанное с длинной историей дискуссий в эмбриологии. В противоположность преформизму, эта доктрина полагает, что вся сложность организма возникает в процессе развития при взаимодействии генов и среды из относительно простой зиготы, но не детерминирована полностью свойствами яйцеклетки. Эта книга основана на идее (которую я одобряю), что генетический код – скорее средство достижения, чем проект. Иногда говорят, что различие между эпигенезом и преформизмом было ликвидировано современной молекулярной биологией. Я не согласен с этим и подчеркнул многие различия их в главе 9, где я настаиваю: эпигенез, но не преформизм, подразумевает, что эмбриональное развитие – процесс принципиально необратимый (см. центральная догма).



Эпистаз – класс взаимодействий между парами генов в их фенотипических эффектах. Технически их взаимодействие неаддитивно, что означает, грубо говоря то, что суммарный эффект работы этих двух генов не равен сумме их эффектов по отдельности. Например, один ген может маскировать эффекты другого. Этот термин используется, главным образом, в отношении генов в различных локусах, но некоторые авторы используют его также для описания взаимодействия между генами в одном локусе, при этом доминантность/рецессивность – особый случай. См. также доминантность.



Эукариоты – одна из двух основных групп организмов на Земле, включающая всех животных, растений, простейших и грибов. Характеризуется наличием клеточного ядра, и других заключённых в мембраны, клеточных органелл (аналогов «органов» внутри клетки) таких как митохондрии. Противопоставляются прокариотам. Различие между прокариотами и эукариотами гораздо фундаментальнее, чем между животными и растениями (не говоря уж о довольно незначительном различии между человеком и животными).



Эусоциальность – высший из известных энтомологам вид социальности насекомых. Характеризуется комплексом отличительных черт, наиболее важном из которых является наличие касты бесплодных «рабочих», помогающих размножаться своей долгоживущей матери – «царице». Обычно это явление ограничено относят к осам, пчелам, муравьям и термитам, но различные виды других животных также имеют ряд интересных признаков эусоциальности.



Эволюционно-стабильная стратегия (ESS) (Примечание: имеется в виду – вырабатываемая в ходе развития, но не присущая эволюции как таковой) – стратегия, выгодная популяции, преимущественно практикующей данную стратегию. Это определение схватывает интуитивную сущность идеи (см. главу 7), но не очень точно; математическое определение см у Мейнарда Смита, 1974.



Расширенный фенотип – все проявления гена в мире. Как обычно, «проявления» гена понимаются в свете сравнения с его аллелями. Обыкновенный фенотип – это частный случай расширенного, в котором проявления рассматриваются лишь в рамках одной особи – носителя этого гена. Практически удобно ограничить «расширенный фенотип» ситуациями, в которых проявления гена влияют на шансы выживания гена – как позитивно, так и негативно.



Приспособленность – технический термин, имеющий столь много запутанных значений, что я посвятил обсуждению его целую главу (глава 10).



Игр теория – математическая теория, изначально созданная для исследования человеческих игр, и далее обобщённая на экономику, военную стратегию, и эволюцию (в рамках теории эволюционно стабильных стратегий). Сфера теории игр – ситуации, в которых оптимальная стратегия не фиксирована, а зависит от стратегии, которая вероятнее всего принята соперником.



Гамета – одна из половых клеток, сливающихся в ходе полового оплодотворения. Сперматозоид и яйцеклетка являются гаметами.



Геммула – дискредитированная концепция, увлекшая Дарвина в его «пангенетической» теории о наследовании приобретённых характеристик – вероятно единственная серьёзная научная ошибка, когда-либо сделанная им, и пример «плюрализма» за который его недавно хвалили. Предполагалось, что геммула – это маленькая частица наследственности, приносящая информацию от всех частей в эмбриональную клетку.



Ген – единица наследственности. Для различных целей его можно определить различными способами. Молекулярные биологи обычно понимают ген как цистрон. Популяционные биологи иногда понимают его более абстрактно. Вслед за Вильямсом (1966, с. 24), я иногда использую термин «ген», подразумевая нечто, отделяющееся и рекомбинирующее с ощутимой частотой, и как «некую наследственную информацию, подвергающуюся благоприятному или неблагоприятному отбору на приспособленность при одно– или неоднократных его внутренних изменениях.



Генофонд – полный набор генов размножающейся популяции. Метафора, на основе которой предложен этот термин[43] 43

В оригинале – «пруд с генами» – А.П.


[Закрыть], хорошо подходит для этой книги, так как не акцентируется на бесспорном факте, что практически гены циркулируют в дискретных телах, и подчеркивает отношение к массиву генов, как к чему-то аморфному, вроде жидкости.



Генетический дрейф – изменения частот генов из поколения в поколение, обусловленное скорее случайностью, нежели отбором.



Геном – полный набор генов одного организма.



Генотип – генетическая конституция организма в конкретном локусе или наборе локусов. Иногда используется более широко, как полная генетическая копия фенотипа.



Генс (Гентс) – «раса» кукушек, паразитирующих на конкретном виде хозяина[44] 44

Расы отличаются формой и расцветкой яиц – А.П.


[Закрыть]. Различия между гентами должны быть генетическими, и они, как предполагается, находятся на Y хромосоме. Самцы птиц не имеют Y хромосом, поэтому не являются гентами. Термин явно неудачен, так как на латыни это слово относится к клану, имеющему общее происхождение по мужской линии.



Зародышевая линия – часть тела, являющаяся потенциально бессмертной в форме репродуктивных копий, а именно, генетический материал в гаметах и клетках, которые вырабатывают гаметы. Противопоставляется соме – смертной части тела, которая функционирует ради сохранения генов в зародышевой линии.



Градуализм – доктрина, полагающая эволюционные изменения постепенными, а не скачкообразными. В современной палеонтологии это предмет интересных дискуссий. Являются ли пробелы в последовательности окаменелостей артефактами, или они реально имели место? (см. главу 6). Журналисты раздули это псевдопротиворечие до сомнений в законности дарвинизма, который они называют градуалистической теорией. Верно то, что все нормальные дарвинисты – градуалисты в том смысле, что они не верят в скачкообразность появления очень сложных и поэтому статистически невероятных новых адаптаций, таких как глаз. Это именно то, что Дарвин понимал в афоризме «Природа не делает скачков». Но в пределах градуализма (в этом смысле), есть место для дискуссий о том, происходят ли эволюционные изменения гладко, или в мелких толчках, прерывающих длительные периоды стазиса. Это и есть предмет современных дискуссий, и он, даже отдалённо, никоим образом не несёт в себе сомнений в законности дарвинизма.



Групповой отбор – гипотетический процесс естественного отбора среди групп организмов. Часто привлекается для объяснения происхождения альтруизма. Иногда его путают с родственным отбором. В главе 6 я использую различие репликатора и носителя, чтобы отличить групповой отбор альтруистических черт от отбора видов, формирующих макроэволюционные тенденции.



Гаплодиплоид – генетическая система, при которой самцы выводятся из неоплодотворенных яйцеклеток и гаплоидны, а самки – из оплодотворённых, и диплоидны. Поэтому самцы не имеют отцов и сыновей. Самцы передают все свои гены дочерям, которые получают только половину генов от отцов. Гаплодиплоидность наблюдается у почти всех социальных и несоциальных перепончатокрылых (муравьи, пчёлы, осы, и т.д.), а также у некоторых клопов, жуков, клещей и коловраток. Проблемы, которые влечёт гаплодиплоидность своей близостью генетического родства, были изобретательно использованы в теориях эволюции эусоциальности у перепончатокрылых.



Гаплоид – клетку называют гаплоидной, если она содержит одинарный набор хромосом. Гаметы – гаплоидны, и когда они сливаются в ходе оплодотворения, то порождают диплоидную клетку. Некоторые организмы (например грибы и трутни) – состоят только из гаплоидных клеток, а потому называются гаплоидными организмами.



Гетерозиготность – состояние наличия неидентичных аллелей в хромосомном локусе. Обычно применяется к особи, и тогда имеются в виду две аллели в данном локусе. В более широкой трактовке может относиться к полной статистической разнородности аллелей, усреднённой по всем локусам особи или популяции.



Гомеотическая мутация – мутация, заставляющая одну часть тела развиваться в манере, присущей другой части. Например, гомеотическая мутация «antennopedia» у дрозофил заставляет ногу насекомого расти там, где обычно должна расти антенна. Это интересное явление, поскольку оно демонстрирует способность единственной мутации порождать изощрённые и сложные эффекты, но только тогда, когда уже имеется изначальная сложность, которую нужно только изменить.



Гомозиготность – состояние наличия идентичных аллелей в хромосомном локусе. Обычно применяется к особи, и тогда имеют в виду, что у особи – идентичные аллели в локусе. В более широкой трактовке термин может относиться к полной статистической однородности аллелей, усреднённой по всем локусам в особи или в популяции.



K – Отбор – отбор в пользу качеств, полезных для преуспевания в устойчивой, предсказуемой среде, где, вероятно, имеет место суровое соревнование между особями, хорошо приспособленными к жизни в популяциях большого размера, близкого к пределу ёмкости для данной среды, за ограниченные ресурсы. Среди этого разнообразия качеств (за которое, думаю, вы одобрите К-отбор) – такие как крупный размер тела, длинная жизнь, и небольшое число потомков, за коими производится тщательный уход. Противопоставляется r-отбору. 'K' и 'r' – это переменные обычного алгебраического уравнения в популяционной биологии.

Расширенный фенотип Глава 14. Переоткрытие организма

Глава 14. Переоткрытие организма
Посвятив большую часть этой книги развенчанию важности индивидуального организма, и построению альтернативного образа – суматошной толпы эгоистичных репликаторов, борющихся за своё выживание за счет своих аллелей, беспрепятственно простирающихся сквозь стены индивидуального тела, как если бы они были прозрачны, взаимодействующих с миром и друг с другом без оглядки на границы организма, мы теперь призадумались. В самом деле – есть нечто весьма впечатляющее в индивидуальных организмах. Если бы мы надели фантастические очки, в которых тела были бы прозрачны, а была бы видна только ДНК, то увиденное нами в мире распределение ДНК было бы радикально неравномерным. Ядра клеток пылали бы как звёзды, и по-прежнему невидимые многоклеточные тела обрисовывались бы как плотно упакованные галактики с пустым пространством между ними. Миллионы миллиардов пылающих точечек двигались бы в унисон друг с другом, но асинхронно со всеми другими скоплениями таких галактик.

Организм – физически обособленная машина, обычно отгороженная стеной от других таких же машин. Он имеет внутреннюю организацию, часто потрясающей сложности, и демонстрирующую высокую степень того качества, которое Джулиан Хаксли (1912) назвал «индивидуальностью» – буквально неделимостью – достаточно разнородным по форме качеством, заключающимся в потере функциональности при сокращении наполовину. Генетически говоря, индивидуальный организм обычно также ясно определимая единица – клетки которой обладают генами, идентичными по отношению друг к другу, но отличными от генов в клетках других организмов. Для иммунолога индивидуальный организм обладает особым видом «уникальности» (Medawar 1957), которое означает готовность принятия прививки других частей того же тела, но не других тел. Для этолога – и это действительно аспект неделимости в смысле Хаксли – организм – единица поведенческого действия в намного более сильном смысле, чем скажем – два организма, особи в сообщества, или орган внутри организма. Организм имеет одну координирующую центральную нервную[37] 37

Ричард явно погорячился. У многих многоклеточных организмов нервной системы нет (взять хотя бы растения); впрочем единая координация действительно всегда имеется, она реализуется гуморальной системой. – А.П.


[Закрыть] систему. Он принимает «решения» (Докинз & Докинз 1973) как единица.[38] 38

Тут тоже неточность. Даже при наличии координирующей нервной системы, низшие позвоночные, а в ряде ситуаций и высшие, оказавшись под действием двух и более факторов стимуляции, не принимают решение о наличии какой-то одной стратегии поведения, а реагируют статистически. Это позволило К. Лоренцу ввести представление о «республике инстинктов», альтернативной развитой индивидуальности у высших позвоночных. – В.Ф.


[Закрыть] Все члены организма гармонично сговариваются, чтобы вместе и одновременно достигать одного результата. В тех случаях, когда два организма (или более) стараются скоординировать свои усилия, – скажем, когда львиный прайд согласованно подкрадывается к добыче, то великолепие координации между индивидуумами выглядит просто бледно в сравнении с замысловатым гармоническим сочетанием, высокой пространственной и временной точностью работы сотен мускулов в каждой особи. Даже морская звезда, лучи которой наслаждаются определённой автономией, позволяющей разрезать животное на две части, вести себя как единую сущность, и себя так, как будто имеет единую цель, даже если околоротовое нервное кольцо хирургически разрезать.

Я благодарен доктору Дж. П. Хелману, не скрывшему от меня саркастическую реакцию коллег на статью, которая была краткой проверочной версией этой книги (Докинз 1978): «Ричард Докинз переоткрыл организм». Ирония мне понятна, но там всё не так просто. Мы не возражаем, что есть что-то особенное в индивидуальном организме как в уровне иерархии жизни, но это не есть нечто очевидное, что можно принять без вопросов. Я надеюсь, что эта книга наглядно показала наличие второй стороны куба Неккера. Но куб Неккер имеет привычку перещёлкиваться назад к его первоначальной ориентации, и затем чередовать ориентации. Да, есть что-то особенное в индивидуальном организме как единице жизни, и мы должны увидеть это яснее, рассмотрев другую сторону куба Неккера, и приучив свои глаза видеть сквозь стены тел мир репликаторов и их расширенные фенотипы.

Так что же есть особенного в индивидуальном организме? Учитывая, что жизнь следует рассматривать как состоящую из репликаторов с их расширенными фенотипическими инструментами выживания, почему на практике репликаторы захотели группировать себя – сотнями тысяч! в клетках, и почему они повлияли на эти клетки так, чтобы те клонировали себя миллионами и миллиардами в организмах?

Один ответ предложен логикой сложных систем. Саймон (1962) написал стимулирующее эссе об «архитектуре сложности», которое предлагает (используя ставшую известной притчу о двух часовщиках – Темпусе и Хоре), общую функциональную причину того, почему сложная организация любого вида, биологическая или искусственная, стремится организовываться во вложенные иерархии повторяющихся субъединиц. Я развил его аргументацию в этологическом контексте, делая вывод, что эволюция статистически «невероятных ансамблей проходит быстрее, если существует последовательность промежуточных устойчивых субансамблей. Так как аргументация применима на уровне каждого субансамбля, то значит, что существующие в мире высокосложные системы вероятно должны иметь иерархическую архитектуру». (Докинз 1976b). В нашем контексте иерархия состоит из генов в клетках, и клеток в организмах. Маргулис (1981) убедительно указывает на красивый вариант старой идеи, говоря, что иерархия включает промежуточный уровень – сами эукариотические «клетки» в некотором смысле – многоклеточные группы, симбиотические союзы объектов, таких как митохондрии, пластиды и реснички, которые произошли от, и являются гомологами прокариотических клеток. Я не буду здесь развивать этот вопрос. Идея Саймона очень обобщённая, нам нужен более определённый ответ на вопрос о том, почему репликаторы захотели организовывать свои фенотипы в функциональные единицы, особенно на двух уровнях – клетки и многоклеточного организма.

Чтобы задавать вопросы о том, почему мир является таким, таков он есть, мы должны представить себе, каким он мог бы быть. Нужно изобрести возможные миры, в которых жизнь могла бы быть организована по-другому, и спросить, что бы в них могло происходить. Тогда какие поучительные альтернативы построения жизни мы можем вообразить? Прежде всего – чтобы понять почему реплицирующиеся молекулы собраны в клетках, мы вообразим мир, в котором реплицирующиеся молекулы плавают свободно в море. Существуют различные вариации репликаторов, они конкурируют друг с другом за место и химические ресурсы, необходимые для построения своих копий, но они не сгруппированы вместе в хромосомах или ядрах. Каждый отдельный репликатор проявляет фенотипическую власть, производя копии самого себя, и отбор одобряет тех из них, которые обладают наиболее эффективной фенотипической силой. Легко поверить, что эта форма жизни была бы эволюционно неустойчива. Всё было бы захвачено мутантными репликаторами, которые «объединяются в бригады». Некоторые репликаторы имели бы химические эффекты, дополняющие таковые других репликаторов – дополняющие в том смысле, что когда два их химических эффекта объединены, репликация обоих облегчается (см. модель-2 в предыдущей главе). Я уже приводил пример генов, кодирующих ферменты, катализирующих последовательные стадии биохимической реакции. Тот же принцип может применяться к большим группам взаимодополнительных реплицирующихся молекул. Действительно, реальная биохимия предполагает, что минимальная единица репликации, может быть кроме как у полного паразита, погружённого в питательную среду, составляет приблизительно пятьдесят цистронов (Margulis 1981). Здесь нет никакого различия в том, возникают ли новые гены дублированием старых и остаются рядом, или сходятся вместе ранее независимые гены. Мы можем далее обсудить эволюционную стабильность состояния «пребывания в бригаде».

«Комплектование» генов в клетки тогда понять легко, но почему клетки «собираются» вместе в многоклеточные клоны? В этом случае нам не требуется изобретать мысленных экспериментов, потому что и одноклеточные, и бесклеточные организмы изобилуют на нашем мире. Они однако все очень малы, и может быть было бы полезно вообразить возможный мир, в котором существуют большие и сложные одноклеточные или одноядерные организмы. Может ли существовать такая форма жизни, в которой единственный набор генов, возведённых на престол в единственном центральном ядре, управлял бы биохимией макроскопического тела со сложными органами; ну может не единственная гигантская «клетка», а многоклеточное тело, в котором все клетки кроме одной, были бы лишены их собственных частных копий генома? Я думаю, что такая форма жизни могла бы существовать лишь в том случае, если бы её эмбриогенез следовал бы принципам, очень отличным от тех, с которыми мы знакомы. Во всех известных нам случаях эмбриогенеза, в любом типе дифференцирующейся ткани, в любой момент «включена» незначительная часть генов (Gurdon 1974). Это был бы по общему признанию слабый аргумент на этом поприще, но если бы существовал только один набор генов во всём теле, было бы сложно понять, как соответствующие продукты гена могли быть передаться в различные части дифференцирующегося тела с должной скоростью.

Но зачем нужен полный набор генов в каждой клетке развивающегося тела? Легко представить себе такую форму жизни, в которой в ходе дифференцирования части генома отделяются так, чтобы данный тип ткани (скажем – ткани печени или почек), имел бы только те гены, которые ей требуются. И только клетки зародышевой линии выглядят действительно нуждающимися в хранении полного генома. Причиной этого может быть просто отсутствие лёгкого способа физически отделять части генома. В конце концов – гены, необходимые в какой-то конкретной дифференцированной зоне развивающегося тела, вовсе не сосредоточены на одной хромосоме. Предполагаю, мы теперь можем задать вопрос, почему это именно так. Учитывая фактическое положение дел, можно полагать полное разделение всего генома при каждом делении клетки просто самым лёгким и экономичным способом ведения таких дел. Однако, в свете моей притчи (глава 9) о марсианине в розовых очках, и потребности в цинизме, читатель может захотеть поразмышлять далее. Может быть так, что дублирование полного (а не частичного) генома в митозе является адаптацией некоторых генов, направленной на сохранение возможности обнаруживать и пресекать деятельность потенциальных мошенников среди их коллег? Лично я сомневаюсь в этом, но не потому что идея в корне притянута за уши, а потому что с трудом представляю, как ген, скажем – в печени может мошеннически извлекать выгоду, управляя печенью так, чтобы это наносило ущерб генам в почке или селезёнке. Из логики главы про паразитов следует, что интересы «генов печени» и «генов почек» накладываются, потому что они разделяют одну и ту же зародышевую линию, и один и тот же гаметный путь выхода из данного тела.

Я не привёл строгого определения организма. Вопрос этот очень спорен, ибо организм – концепция столь сомнительной полезности, что его трудно определить удовлетворительно. С иммунологической или генетической точек зрения пара монозиготных близнецов должна бы считаться одним организмом, которые с очевидностью им не являются с точки зрения физиолога, этолога, или критерия неделимости Хаксли. Что является «особью» у колониальных сифонофор или мхов? У ботаников есть серьёзные основания менее доверять словосочетанию «индивидуальный организм», чем у зоологов: «Особи плодовой мушки, мучного жука, кроликов, плоских червей или слонов – это популяции на клеточном, но не на любом более высоком уровне. Голодание не изменяет количество ног, сердец или печеней животного, но эффект стресса на растения состоит в изменении темпа формирования новых листьев, и темпа отмирания старых: растение может реагировать на стресс, изменяя количество его частей» (Harper 1977, PP. 20–21). Для Херпера, как популяционного биолога растений, листья могут быть более существенным «индивидуумом», чем «растение», так как растение – широко распределённая в пространстве, смутная сущность, репродукцию которого можно с трудом отличить от того, что зоолог счастливо назвал бы «ростом». Херпер чувствует себя обязанным ввести два новых термина для различных видов «индивидуумов» в ботанике. «“Рамета” – единица клонального роста – модуль, который часто может вести независимое существование, будучи отделённым от родительского растения». Иногда, как у земляники, рамета – единица, которую мы обычно называем «растением». В других случаях – таких, как белый клевер, рамета может быть отдельным листом. Напротив, «генета», является единицей, которая происходит от одной одноклеточной зиготы – «индивидуум» в смысле зоолога, изучающего животные с половым размножением.

Джанзен (1977) столкнулся с тем же затруднением, и предложил расценивать клон одуванчиков как один «эволюционный индивидуум» (генет, по Херперу), эквивалентный единому дереву, хотя он не поднимается высоко в воздух, более сосредотачиваясь у поверхности, и разделён на физически отдельные «растения» (раметы по Херперу). Согласно этому представлению, на всей территории северной Америки существуют только четыре индивидуальных одуванчика, конкурирующие друг с другом за эту территорию. Джанзен рассматривает клон тлей аналогично. Его статья вообще не имеет никаких литературных ссылок, но это представление не ново. Оно восходит к, по крайней мере 1854 году, когда T. Х. Хаксли «трактовал каждый цикл жизни – от одного акта полового размножения до другого – как индивидуума, являющегося единой единицей. Он даже трактовал линию бесполого размножения тлей как индивидуум» (Ghiselin 1981). В таком стиле размышлений есть достоинства, но я покажу, что оно упускает кое-что важное.

Вот один способ переформулировать соображения Хаксли-Джанзена. Зародышевая линия типичного организма, скажем – человека, проходит через возможно несколько дюжин последовательных митотических делений между каждым мейозом. Если использовать описанный в главе 5 «ретроспективный» способ рассмотрения «прошлого опыта гена», то любой взятый ген в ныне живущем человеке имеет такую историю клеточных делений: мейоз, митоз, митоз....митоз, мейоз. В каждом следующем теле, в параллель с митотическим делением зародышевой линии, другие митотические деления снабдили зародышевую линию большим клоном клеток-«помощников», сгруппированных вместе в тело, где находится зародышевая линия. В каждом поколении зародышевая линия втискивается в одноклеточное «бутылочное горлышко» (гамета с последующей зиготой), которое затем раздувается в многоклеточное, которое затем снова втискивается в новое бутылочное горлышко, и т.д. (Bonner 1974).

Многоклеточное тело – машина для производства одноклеточных пропагул. Большие тела, такие как у слонов, наглядно воспринимаются как тяжёлые машины и даже заводы, в создание которых временно вбухано много ресурсов – с целью позже улучшить производство пропагул (Southwood 1976). В некотором смысле зародышевая линия заинтересована в уменьшении инвестиций капитала в тяжёлые машины, в уменьшении количества делений клеток в фазе роста с тем, чтобы сократить интервал между актами воспроизводства. Однако этот интервал имеет оптимальную длительность, которая различна для различных форм жизни. Гены, побуждавшие слонов размножаться, когда те слишком молоды и малы, размножали себя менее эффективно чем аллели, стремящиеся выдержать оптимальный интервал размножения. Оптимальный интервал для генов, оказавшихся в генофонде слона, намного длиннее, чем таковой для генов в генофонде мыши. Слону требуется инвестировать больше капитала, прежде чем эти инвестиции начнут «окупаться». Простейшие в значительной степени вообще обходится без фазы роста в жизненном цикле, и все их деления клетки «репродуктивные».

Отсюда следует, что данный способ рассмотрения организмов полагает, что их конечным продуктом, «целью» фазы роста жизненного цикла, является воспроизводство. Все митотические деления клетки, создающие слона, направлены на достижение финала – размножения жизнеспособных гамет, которые преуспеют в увековечивании зародышевой линии. Теперь, держа это в уме, посмотрим на тлей. Летом бесполые самки проходят ряд поколений бесполого воспроизводства, достигающий кульминации в единственном половом поколении, с которого цикл начинается снова. Ясно, что по аналогии со слоном, легко согласиться с Джанзеном в рассмотрении летних бесполых поколений как всецело направленных на финал – половое воспроизводство осенью. Бесполое воспроизводство, согласно этому представлению – на деле не воспроизводство вообще. Это – рост, такой же, как рост тела отдельного слона. Для Джанзена весь клон самок тлей – единственный эволюционный индивидуум, потому что он продукт единственного полового слияния. Да, это необычный индивидуум, который оказался раздроблен на множество физически отдельных единиц, ну и что? Каждая из этих физических единиц несёт собственный фрагмент зародышевой линии, но то же самое делает левый и правый яичник слонихи. Фрагменты зародышевой линии у тли отделены слоем воздуха, а у слонихи два яичника отделены кишками, но, опять же – ну и что?

Как ни убедительна эта линия доказательств, но я уже упомянул, по-моему она пропускает важный момент. Правильно расценить большинство митотических делений клетки как «рост», «нацеленный» на финальную цель – воспроизводство, и правильно расценить индивидуальный организм как продукт одного репродуктивного акта, но Джанзен не прав, приравнивая различие между воспроизводством и ростом к различию между половым и бесполым размножением. Да, что и говорить, здесь имеется важное различие, но это не различие между половым и бесполым, точно также это не различие между мейозом и митозом.

Различие, которое я хочу подчеркнуть – это различие между делениями клеток зародышевой линии (воспроизводство), и делением соматических клеток, или клеток «тупиковой линии» (рост). Деление клеток зародышевой линии – это такое деление, когда дублируемые гены имеют шанс стать предками неопределенно длинной линии потомков, а гены – фактически истинные репликаторы зародышевой линии в смысле главы 5. Деление клеток зародышевой линии может быть митотическим или мейотическим. Если мы просто наблюдаем деление клетки под микроскопом, то мы не можем узнать, делятся ли это клетки зародышевой линии или нет. Деления как клеток зародышевой линии, так и соматических клеток могут быть внешне неотличимым митозом.

Если мы рассмотрим ген в любой клетке в живущем организме, и проследим его историю в эволюционное прошлое, то немного самых недавних клеточных делений его «опыта» могут быть соматическими, но как только мы достигаем деления клетки зародышевой линии на нашем марше назад, то все предыдущие деления в истории гена будут делениями зародышевой линии. Деления клетки зародышевой линии можно трактовать как эволюционный переход вперёд, в то время как соматические деления клетки являются переходом вбок. Соматические деления клеток используются для изготовления смертных тканей, органов и инструментов, «цель» которых – поддержка делений клеток зародышевой линии. Мир населён генами выжившими в зародышевых линиях с помощью, полученной от их точных дубликатов в соматических клетках. Рост происходит вследствие размножения соматических клеток тупиковой линии, в то время как воспроизводство – средство размножения клеток зародышевой линии.

Харпер (1977) определяет различие между воспроизводством и ростом растений, которые будет в норме означать то же самое, что и моё различие между делениями клеток зародышевой линии и соматическими: «различие, определённое здесь между “воспроизводством” и “ростом” состоит в том, что воспроизводство – это формирование нового индивидуума из единственной клетки: это – обычно (хотя и не всегда – например при апомиксисе) зигота. В ходе этого процесса новый индивидуум “воспроизводится” по информации, закодированной в клетке. Рост же, напротив – следует из развития организованных меристем» (Харпер, 1977 с. 27). В чём сущность здесь – действительно ли есть важное биологическое различие между ростом и воспроизводством, которое – не есть то же самое, как различие между митозом и мейозом + наличием пола? Действительно ли есть критическое различие между «репродуцированием», которое делают две тли с одной стороны, и «ростом», когда одна тля просто дублируется по образу другой? Джанзен возможно сказал бы, что нет. Харпер возможно сказал бы, что да. Я согласен с Харпером, но я не смог бы доказать мою позицию, пока не прочитал вдохновляющую книгу «Развитие» Дж. T. Боннера (1974). Доказательство лучше всего сделать с помощью мысленного эксперимента.

Представьте себе примитивное растение, состоящее из плоского, листоподобного тела, плавающего на поверхности моря. Питательные вещества оно поглощает нижней частью тела, а солнечный свет – верхней. Вместо «репродуцирования» (то есть распространения одноклеточных пропагул, могущих прорастать в другом месте), оно просто растёт по краям, расползаясь во всё больший и больший круглый зелёный ковёр, подобный листу чудовищной водяной лилии – несколько миль в поперечнике, продолжающий расти. Возможно, что старые части тела в конечном счёте отмирают, и оно будет представлять собой скорее расширяющееся кольцо, а не полный круг, подобный настоящему листу лилии. Также возможно, что время от времени куски тела откалываются наподобие плавучих льдин, откалывающихся от пакового льда, и независимо дрейфующих в другие частям океана. Даже если мы допускаем такой способ «размножения», то я покажу, что это не есть воспроизводство в интересующем нас смысле слова.

Теперь рассмотрим подобный вид растения, который отличается от вышеописанного в одном принципиальном отношении. Оно прекращает расти, когда достигает диаметра в 1 фут, и переходит к воспроизводству. Оно продуцирует одноклеточные пропагулы, будь то половым или бесполым способом, и выбрасывает их в воздух, где их подхватывает ветер, и может унести очень далеко. Когда одна из этих пропагул попадает на водную поверхность, она становится новым телом, которое растёт, пока не достигнет 1 фут в диаметре, и затем снова переходит к воспроизводству. Я назову два вида растений соответственно G (растущее) и R (воспроизводящееся).

Следуя логике статьи Джанзена, мы должны полагать различие между этими двумя видами критическим лишь в случае, если «воспроизводство» вида R половое. Если оно бесполое, то выброс в воздух пропагул, являющихся продуктами митоза, генетически идентичными клеткам родительского тела, не может быть для Джанзена важным отличием между двумя видами. Отдельные «индивидуумы» вида R генетически отличны не более, чем могут быть отличны различные зоны тела у вида G. У любого вида мутация может инициировать появление новых клонов клеток. Нет никаких особых причин полагать, что у R мутации с большей вероятностью будут происходить ходе формирования пропагулы, чем в ходе роста тела. R – это просто более фрагментированная версия G, как одуванчики – сходным образом более фрагментированное дерево. Однако цель этого моего мысленного эксперимента состояла в том, чтобы раскрыть важное различие между этими двумя гипотетическими видами, раскрывающее различие между ростом и воспроизводством, даже когда воспроизводство бесполое.

G только растёт, а R чередует рост и воспроизводство. Почему это отличие важно? Прямолинейная генетика не может дать ответ на этот вопрос, ибо мы видели, мутации с равной вероятностью могут инициировать генетические изменения как в ходе митоза роста, так и в ходе митоза воспроизводства. Я полагаю, что важное различие между этими двумя видами в том, что линия R способна на такие способы развития сложной адаптации, на какие G не способна. И вот почему.

Рассмотрим снова историю гена; конкретно – гена, находящегося в клетке R. Его история состоит из неоднократных переходов с одного «носителя» на другой, подобный. Каждое из серии его тел началось с одноклеточной пропагулы, следующего затем фиксированного цикла роста, затем перехода гена в новую одноклеточную пропагулу, и следовательно – в новое многоклеточное тело. История этого гена была циклична, и в этом суть. Каждое из тел этой длинной серии, развивающихся заново с одноклеточных родоначальников, имеет возможность далее развиваться слегка отлично от своих предшественников. Эволюция сложной структуры тела с органами, скажем – сложного аппарата ловли насекомых, типа Венериной мухоловки, возможна лишь в случае, если развитие идёт в ходе циклически повторяющегося процесса. Я вернусь к этой мысли чуть ниже.

Теперь рассмотрим G. Ген, находящийся в молодой клетке растущего края огромного тела имеет другую историю; она – не циклическая, а если и циклическая, то только на клеточном уровне. Предком нашей клетки была другая клетка, и карьера этих двух клеток была очень похожа. Напротив, каждая клетка растения R имеет определенное место в процессе роста. Или она находится вблизи центра однофутового тела, или с краю, или в некотором определённом месте между ними. Поэтому она может дифференцироваться, дабы выполнять её особую роль в данном месте – в органе растения. Клетка G не приобретает в ходе развития такой определённой идентичности. Все клетки сначала появляются на растущем лимбе, позже оказываются перекрытыми другим, более молодыми клетками. Имеется цикличность только на клеточном уровне, что означает, что в эволюционные изменения у G могут происходить только на клеточном уровне. Клетки могли бы улучшаться в сравнении с их предшественниками по линии клеточного развития, скажем – развивая более сложную внутреннюю структуру органелл. Но эволюция органов, и адаптация на многоклеточном уровне не могут иметь место, потому что повторяющегося, циклического развития групп клеток не происходит. Конечно верно то, клетки G и их предки находятся в физическом контакте с другими клетками, и в этом смысле формируют многоклеточную «структуру». Но степень их «заинтересованности» в объединении в сложные многоклеточные органы такова, что они могли бы точно также свободно плавать в море в виде одноклеточных простейших.

Чтобы собрать сложный многоклеточный орган, нужна сложная последовательность развития. Сложная последовательность развития должна базироваться на более ранней, слегка менее сложной последовательности. Должна иметь место эволюционная прогрессия последовательностей развития, где каждый член этой серии был бы слегка усовершенствованной версией своего предшественника. G не обладает повторяющейся последовательностью развития, кроме высокочастотного цикла развития на уровне отдельной клетки. Поэтому он не может развивать многоклеточное дифференцирование, и повышать сложность на уровне органа. В той мере, в какой рост такого многоклеточного тела вообще можно считать развитием, такое развитие нециклически продолжается на протяжении геологического времени: у вида не имеется никакого различия между масштабом времени роста, и потенциальным масштабом времени эволюции. Единственный высокочастотный цикл развития, доступный ему – цикл клетки. Напротив, R имеет многоклеточный цикл развития, который быстр в сравнении с эволюционным временем. Поэтому – по мере смены эпох, поздние циклы развития могут отличаться от более ранних, и может развиваться многоклеточная сложность. Мы, таким образом, подходим к определению организма как единицы, жизнь которой инициирована в ходе нового акта воспроизводства через одноклеточное «бутылочное горлышко».

Важность различия между ростом и воспроизводством состоит в том, что каждый акт воспроизводства инициирует новый цикл развития. Рост просто раздувает существующее тело. Когда одна тля партеногенетически порождает новую тлю, то если она – мутант, то она может радикально отличаться от её предшественницы. Допустим, тля вырастает вдвое больше её первоначального размера, и все её органы и сложные структуры просто раздуваются. Да, можно сказать, что соматические мутации могут происходить на линии развития клеток растущей гигантской тли. Это верно, но мутация на линии соматических клеток, скажем, в сердце, не может радикально реорганизовать структуру сердца. Возьмём к примеру, позвоночных. Если данное сердце двухкамерное, с одним клапаном, питающим один желудочек, то крайне маловероятно, что новые мутации в митотических клетках растущего сердца смогут произвести радикальное реструктурирование сердца, чтобы оно стало четырёхкамерным с отдельным кругом лёгочного кровообращения. Чтобы породить новую сложность, требуется новое начало развития. Новый эмбрион должен начать его на пустом месте, вообще без сердца. Тогда мутация сможет воздействовать на чувствительные ключевые точки в раннем развитии, порождая новую фундаментальную архитектуру сердца. Повторяющиеся циклы развития позволяют возвращаться «назад, к чистому листу» (см. ниже) в каждом поколении.

Мы начали эту главу с вопроса о том, почему репликаторы «сбригадированы» в большие мультиклеточные клоны, называемые организмами, и первоначально дали малоудовлетворительный ответ.[39] 39

На мой взгляд, самый интересный вопрос – не то, почему гены и реализующие их фенотипы собраны в «команды», называемые организмами, а то, что всякая такая «команда» обладает собственной специфической организацией (планом строения, морфологией), которая воспроизводится в череде поколений и в широком диапазоне «шумов» среды намного устойчивой и лучше, чем отдельные гены. На эту тему стоит почитать И. И. Шмальгаузена – В.Ф.


[Закрыть] Сейчас ответ начинает нас удовлетворять больше. Организм – это физическая единица, ассоциированная с одним единственным циклом жизни. Репликаторы объединившись в многоклеточные организмы, обеспечивают себе регулярно повторяющуюся историю, и сложные адаптации, призванные помочь им в сохранении себя – путём эволюционного прогресса.

Цикл жизни некоторых животных состоит из более чем одного отличающегося тела. Бабочка сильно отличается от предшествовавшей ей гусеницы. Трудно представить себе бабочку вырастающую из гусеницы посредством медленных изменений органов – чтобы орган гусеницы превратился бы в соответствующий орган бабочки. На практике – вместо этого сложная структура органов гусеницы в значительной степени разрушается, а ткани гусеницы используются как сырьё и топливо для развития всего нового тела. Новое тело бабочки начинается не совсем с единственной клетки, но принцип тот же самый. Оно развивает радикально новую телесную структуру из простых, малодифференцированных имагональных дисков. Это частичное возвращение к чистому листу.

Вернёмся к самому различию между ростом и воспроизводством. Джанзен фактически не был неправ. Различия могут быть незначительными с точки зрения некоторых целей, и в то же время оставаться важными для других. При обсуждении некоторых экологических или экономических вопросов не может быть важных отличий между ростом и бесполым воспроизводством. Дружная семья сестёр-тлей действительно может быть аналогична одному медведю. Но для других целей, при обсуждении эволюционного происхождения сложной организации, различие критически важно. Определённые экологические вопросы может осветить сравнение поля одуванчиков с единым деревом. Но для других целей важно понять различия, и видеть аналогичным дереву отдельный одуванчик.

Но мнение Джанзена – это в любом случае мнение меньшинства. Обыкновенный биолог мог бы полагать извращением взгляд Джанзена на бесполое воспроизводство тлей как на рост; в равной степени он бы полагал моим и Харпера извращением мнение, что следует расценивать вегетативное распространение многоклеточными побегами как рост, но не воспроизводство. Наше решение основано на том, что побег – многоклеточная меристема, а не одноклеточная пропагула, но почему нужно расценивать этот факт как принципиальный? Ответ можно снова увидеть в мысленном эксперименте, использующем два гипотетических вида растений, в данном случае земляникоподобные растения, обозначенные как М и S (Докинз в печати).

Оба гипотетических земляникоподобных вида размножаются вегетативно, побегами. У обоих есть популяции, в которых отдельные и распознаваемые «растения», выглядят связанными сетью побегов. У обоих видов, каждое «растение» (то есть рамета) может породить более чем одно дочернее растение, так что мы бы имели возможность видеть экспоненциальный рост «популяции» (или рост «тела» – в зависимости от вашей точки зрения). Хотя у них нет пола, у них возможна эволюция, так как в митотических делениях клеток будут иногда происходить мутации (Whitham & Slobodchikoff в прессе). Теперь – критическое различие между двумя видами. У вида М (многоклеточный, или меристемный), побег – обширная многоклеточная меристема. Это означает, что две клетки любого «растения» могут быть митотическими потомками двух различных клеток родительского растения. Поэтому, в терминах митотического происхождения, клетка может быть более близким родственником клетки на другом «растении», чем другой клетке на её собственном растении. Если мутация внесёт генетическую разнородность в клеточную популяцию, то получится, что индивидуальные растения будут генетическими мозаиками, в которых некоторые клетки будут иметь более близких генетических родственников на других растениях, чем на их собственном. Мы увидим последствия этого для эволюции чуть ниже. А пока посмотрим на другой гипотетический вид.

Вид S в точности подобен М, за исключением того, что каждый побег сходится в единственной верхушечной клетке. Эта клетка выступает как базальный митотический предок всех клеток нового дочернего растения. Это означает, что все клетки данного растения – более близкие родственники друг другу, чем любым клеткам на других растениях. Если мутация внесёт генетическую разнородность в популяцию клеток, то будет относительно немного мозаичных растений. Скорее каждое растение будет склонно к генетическому единообразию, и может генетически отличаться от некоторых других растений, будучи генетически идентичным всем остальным. Это будет истинная популяция растений, каждое их которых будет иметь генотип, типичный для генотипа всех его клеток. Поэтому возможно представить себе отбор – в смысле, который я назвал «отбором носителя», действующий на уровне всего растения. Некоторые растения, обладая превосходящими генотипами, могут быть лучше других.

У вида М, особенно если побеги – очень массивные меристемы, генетик возможно вообще не сможет распознать популяцию растений. Он будет видеть популяцию клеток, каждую с её собственным генотипом. Некоторые клетки будут генетически идентичны, у других будут различные генотипы. Какой-то естественный отбор мог бы продолжаться среди клеток, но трудно представить себе отбор среди «растений», потому что «растение» – есть не единица, которую можно идентифицировать как обладателя собственного специфического генотипа. Скорее – вся масса расползшейся растительности должна быть расценена как популяция клеток с любыми генотипами, неряшливо разбросанными по различным «растениям». Та единица, которую я заключил в тюрьму – «носитель гена», и которую Джанзен назвал «эволюционным индивидуумом», в таком случае будет не больше клетки. Именно клетки будут генетическими конкурентами. Эволюция может принимать форму усовершенствований клеточной структуры и физиологии, но трудно представить, как она могла бы принимать форму усовершенствований индивидуальных растений или их органов.

Можно было бы представить, что усовершенствования структуры органа могли бы развиваться, если бы конкретные субпопуляции клеток в фиксированных зонах растения регулярно оказывались бы клоном, происходящим от единственного митотического предка. Например побег, порождающих новое «растение» мог бы быть массивной меристемой, но тем не менее каждый лист развивался бы из отдельной клетки его собственной основы. Поэтому листья могли бы быть клоном клеток, более близко связанных друг с другом, чем с другими клетками растения. Учитывая обычность соматических мутаций у растений (Whitliam & Slobodchikoff в прессе), разве нельзя ли представить себе эволюцию совершенной сложной адаптации на уровне листьев, а может и на уровне всего растения? Генетик теперь мог бы различать генетически гетерогенную популяцию листьев, каждый из которых состоял бы из генетически однородных клеток, и разве естественный отбор не мог бы продолжаться между успешными и неуспешными листьями? Было бы неплохо, если бы ответ на этот вопрос бы положительным; то есть – если бы мы смогли утверждать, что отбор носителей продолжится на любом уровне в иерархии многоклеточных единиц, при условии, что клетки в этой единице как правило генетически едины в сравнении с клетками в других единицах того же уровня. К сожалению однако, в нашем рассуждении было кое-что упущено.

Вспомним, что я расклассифицировал репликаторы на репликаторы зародышевой линии, и репликаторы тупиковой линии. Естественный отбор приводит к тому, что некоторые репликаторы становятся более многочисленным за счёт конкурирующих, но это приводит к эволюционным изменения только тогда, когда эти репликаторы принадлежат зародышевым линиям. Многоклеточная единица квалифицируется как носитель (в эволюционно интересном смысле), только тогда, когда по крайней мере некоторые из её клеток содержат репликаторы зародышевой линии. Листья обычно так не квалифицируются, поскольку ядра их клеток содержат лишь репликаторы тупиковой линии. Клетки листьев синтезируют химические вещества, которые в конечном счёте приносят пользу другим клеткам, которые уже содержат копии генов листьев зародышевой линии, генов, которые придали листьям их характерный «листовой» фенотип. Но мы не можем согласиться с заключением предыдущего параграфа, что межлистьевой отбор носителей, как и отбор между органами вообще, мог бы идти лишь потому, что клетки органа были бы более близкими митотическими родственниками, чем клетки в других органах. Отбор среди листьев мог бы иметь эволюционные последствия только тогда, когда листья могли бы непосредственно порождать дочерние листья. Листья – это органы, а не организмы. Чтобы отбор между органами имел место, необходимо, чтобы соответствующие органы имели бы свои собственные зародышевые линии, осуществляли бы своё собственное репродуцирование, чего они обычно не делают. Органы – это части организмов, а воспроизводство – прерогатива организмов.

Для наглядности я немного утрировал. Между моими двумя земляникоподобными растениями мог существовать диапазон промежуточных звеньев. Побег вида М был постулирован массивной меристемой, а побег вида S был сужен до одноклеточного начала, лежащего в основе каждого нового растения. Но что если принять промежуточный вид с двухклеточным началом, лежащим в основе каждого нового растения? Здесь открываются две главные возможности. Если схема развития такова, что будет невозможно предсказать, от какой из двух клеток побега какие клетки дочернего растения будут происходить, то мысль, которую я высказал насчёт всех узких местах развития, будет просто ослаблена количественно: генетические мозаики могут наблюдаться в популяции растений, но тем не менее будет иметь место статистическая тенденция большей генетической близости клеток к своему приятелю на том же растении, чем к клеткам на других растениях. Поэтому мы всё ещё сможем многозначительно говорить об отборе носителей между растениями в популяции растений, но давлениям отбора между растениями, придётся вероятно быть более сильным, чтобы перевесить отбор между клетками в растениях. Это условие, кстати аналогично одному из условий для работы «группового и родственного отбора» (Гамильтон 1975a). Для усиления аналогии нам лишь нужно рассматривать растение как «группу» клеток.

Вторая возможность, вытекающая из предположения о двухклеточном начале в основе каждого растения появляется тогда, когда схема развития вида была бы такой, что некоторые органы растения всегда были бы митотическими потомками одной из этих двух клеток. Например, клетки корневой системы могли бы развиваться из клетки в низкой части побега, а остальная часть растения развивалась бы из другой клетки, в верхней части побега. Далее, если бы низкая клетка всегда происходила бы от клетки корня родительского растения, а верхняя клетка была бы завербована наземной клеткой родительского растения, то мы бы имели интересную ситуацию. Корневые клетки были бы более близкими родственниками к другим корневым клеткам во всей популяции, чем к клеткам стебля и листьев их «собственного» растения. Мутации открыли бы возможность эволюционных изменений, но это будет эволюция на уровне раскола. Подземные генотипы могли бы развиваться в другую сторону от надземных, независимо от очевидного единого членства по отношению к дискретным «растениям». Теоретически даже могло бы иметь место своего рода внутриорганизменное «видообразование».

Резюмируем. Суть различий между ростом и воспроизводством в том, что воспроизводство даёт возможность начать сначала новый цикл развития, а новый полученный так организм может быть совершеннее своего предшественника в смысле фундаментальной организации сложной структуры. Конечно, этого совершенства может не быть, если его генетический базис будет ликвидирован естественным отбором. Но рост без воспроизводства даже не предоставляет возможностей для радикальных перемен на уровне органа, как в направлении улучшения, так и регресса. Он позволяет только наскоро латать заплаты. Вы можете изменить процесс «развития» Бентли, дабы он вырос в полноразмерный Роллс-Ройс, просто вмешавшись в процесс сборки на поздней стадии, где уже смонтирован радиатор[40] 40

Эти два автомобиля отличаются друг от друга лишь второстепенными деталями; впрочем Докинз здесь сильно утрирует – А.П.


[Закрыть]. Но если вы захотите переделать Форд в Роллс-Ройс, то вы должны будете начать с чистого листа – вообще до того, как автомобиль начнёт «расти» на сборочной линии. Смысл повторяющихся репродуктивных циклов в жизни, и следовательно, их значения для организмов в том, что они позволяют повторно возвращаться к чистому листу на протяжении эволюционного времени.

Здесь нам нужно остерегаться ереси «биотического» адаптационизма (Williams 1966). Мы видели, что повторяющиеся репродуктивные циклы жизни, то есть – «организмы», делают возможной эволюцию сложных органов. Всё это слишком заманчиво трактовать как достаточное адаптивное объяснение существования организменных циклов жизни – дескать сложные органы (в некотором расплывчатом смысле) – хорошая идея. Близкая идея состоит в том, что повторяющаяся репродукция возможен только в случае смертности индивидуумов (Мейнард Смит 1969), но мы не должны впадать в соблазн утверждения о том, что смертность индивидуумов – адаптация, призванная поддерживать ход эволюции! То же самое можно сказать о мутациях: их наличие – необходимое базовое условие для работы эволюции, однако весьма вероятно, что естественный отбор одобрил бы эволюцию в направлении нулевого темпа мутаций – к счастью недостижимого (Williams 1966). Такой жизненный цикл: рост-воспроизводство-смерть, типичный для многоклеточного клонального «организма» – имел далеко идущие последствия, и был вероятно основой для эволюции адаптивной сложности, но это утверждение не эквивалентно адаптивному объяснению существования такого цикла жизни. Дарвинист должен начать с поисков немедленной выгоды для генов, реализующим именно такой цикл жизни – за счёт их аллелей. Он может продолжать соглашаться с возможностью существования других уровней отбора, скажем – дифференциального вымирания линий. Но он должен демонстрировать такую же осмотрительность в этой трудной теоретической области, какую демонстрировали Фишер(1930a), Вильямс (1975) и Мейнард Смит (1978a) по отношению к аналогичным предположениям о половом размножении как средстве ускорения эволюции.

Организм обладает следующими признаками. Он может быть или единственной клеткой, или многоклеточным – при условии что все его клетки являются генетическими родственниками друг друга: они происходят от единственной плодовой клетки, что означает, что у их наиболее близкий по времени общий предок ближе к ним, чем к клеткам любого другого организма. Организм – единица с таким циклом жизни, который, как бы он ни был сложен, повторяет фундаментальные характеристики предыдущих циклов жизни, и может быть более совершенным, чем предыдущие циклы жизни. Организм либо состоит из клеток зародышевой линии, либо содержит клетки зародышевой линии в качестве подмножества своих клеток, либо, как в случае с бесплодными социальными рабочими насекомыми, имеет возможность действовать во благо клеток зародышевой линии близкородственных организмов.

В этой конечной главе я не стремился дать полностью удовлетворительный ответ на вопрос, почему существуют большие многоклеточные организмы. Я буду рад, если я смог возбудить новое любопытство в этом вопросе. Вместо того, чтобы принять существование и вопросить, как адаптация приносит пользу организмам, ею обладающим, я старался показать, что само существование организмов должно быть истолковано как феномен, сам по себе заслуживающий объяснения. Репликаторы существуют, и это фундаментально. Фенотипические проявления их, включая расширенные, следует рассматривать как функционирующие инструменты, служащие цели поддержки существования репликаторов. Организмы – огромные и сложные собрания таких инструментов, собрания разделяемые бригадами репликаторов, которым в принципе не нужно существовать вместе, но фактически существующих вместе – ибо имеющих общий интерес в деле выживания и воспроизводства организма. Привлекая внимание к феномену организма как сущности, нуждающейся в объяснении, я старался в этой главе сделать набросок общего направления, куда бы мы могли бы двигаться в поиске объяснения. Это только предварительный эскиз, но он стоит того, чтобы его здесь резюмировать.

Существующие репликаторы – скорее всего те, которым хорошо удаётся манипулировать миром во имя их собственных преимуществ. Практикуя это, они эксплуатируют возможности, предоставляемые их окружающими средами, и важный аспект окружающей среды репликатора – другие репликаторы и их фенотипические проявления. Успешные репликаторы проявляют выгодные фенотипические эффекты лишь на фоне присутствия других репликаторов, которые оказались широко распространёнными. Эти другие репликаторы также успешны, иначе они не были бы широко распространены. Поэтому мир стремится к тому, чтобы стать населённым взаимно совместимыми наборами успешных репликаторов, репликаторов, которые хорошо преуспевают вместе. В принципе это относится к репликаторам в различных генофондах, различных таксономических видах, классах, типах и царствах. Но отношения особо близкой взаимной совместимости сформировались между поднаборами репликаторов, сосуществующих в ядрах клеток, и там, где наличие полового размножения делает экспрессию значимой, разделяющими генофонды.

Ядро клетки – как популяция тревожно сожительствующих репликаторов – знаменательное явление само по себе. Столь же знаменательным, хотя и весьма отличным, является феномен многоклеточного клонирования, феномен многоклеточного организма. Репликаторы, эффекты которых взаимодействуют с эффектами других репликаторов, приводя к появлению многоклеточных организмов, создают для себя носителей со сложными органами и поведением. Сложные органы и поведение одобряются в гонках вооружений. Эволюция сложных органов и поведения возможна потому, что организм – сущность с повторяющимся циклом жизни, и каждый новый цикл начинается с единственной клетки. Факт рестарта цикла в каждом поколении с единственной клетки позволяет мутациям производить радикальные эволюционные изменения, путём «возвращения к чистому листу» эмбриогенетического проектирования. Также – концентрируя усилия всех клеток организма на благосостоянии небольшой, общей для всех зародышевой линии, частично отбивает у мошенников «искушение» действовать во имя их собственного личного блага за счёт других репликаторов, разделяющих ту же самую зародышевую линию. Объединённый многоклеточный организм – явление, которое появилось в результате естественного отбора первозданно независимых эгоистичных репликаторов. Он отблагодарил репликаторы за общительное поведение. Фенотипическая власть, посредством которой они гарантируют своё выживание, в принципе неограниченна. Практически организм возник как частично ограниченная локальная концентрация, совместный узел власти репликатора.

Расширенный фенотип Глава 13. Дальнодействие гена

Глава 13. Дальнодействие гена
Раковины улиток бывают закручены вправо или влево. Обычно раковины всех особей одного вида закручены одинаково, но имеется несколько полиморфных видов. На тихоокеанских островах раковины сухопутных улиток Partula suturalis в некоторых локальных популяциях закручены вправо, в других влево, в третьих – смешаны в различных пропорциях. Это позволяет изучить генетику право– и левозакрученности (Murray & Clarke 1986). Когда улитки от правозакрученных популяций были спарены с улитками от левозакрученных, то все потомки закручивались в ту же сторону, что и «мать» (родитель, предоставивший яйцеклетку; улитки – гермафродиты). В этом факте можно усмотреть негенетическое влияние матери: когда Марри и Кларк спарили F1 улиток между собой, то получили любопытный результат. Всё потомство было левозакрученное, независимо от направления закрутки раковины любого родителя. Они интерпретировали результат так: направление генетически детерминировано, с доминированием левозакрученного над правозакрученным, но фенотип животного контролируется не его собственным генотипом, а генотипом его матери. Таким образом, особи F1 продемонстрировали фенотипы, детерминированные генотипами их матерей, хотя все содержали одни и те же гетерозиготные генотипы, так как они были рождены от спаривания двух чистых линий. Точно так же всё потомство F2 от спаривания особей F1 показало фенотип, соответствующий левозакрученному генотипу F1 ибо он доминирует, а F1 генотип был гетерозиготен. Базовые генотипы поколения F2, возможно подразделялись в классическом менделевском соотношении 3:1, но это не проявилось в их фенотипах. Это проявилось бы в фенотипах их потомства.

Обратите внимание – фенотип потомка контролируется генотипом матери, а не её фенотипом. Особи F1 сами были левосторонними или правосторонними в равной пропорции, обладая одинаковым гетерозиготным генотипом, и поэтому все произвели левостороннее потомство. Подобный эффект был ранее обнаружен у пресноводной улитки-прудовика Limnaea peregra, хотя в том случае доминировала правозакрученность. Такие «материнские эффекты» давно известны генетикам. Как выразился Форд (1975), «Здесь мы имеем простое менделевское наследование, экспрессия которого постоянно задерживается на одно поколение». Возможно, феномен происходит, когда эмбриогенетическое событие, определяющее фенотипический признак происходит в развитии так рано, что оказывается под влиянием материнских транспортных РНК из цитоплазмы яйцеклетки ещё до того, как зигота начнёт производить собственные транспортные РНК. Направление закручивания раковины улитки детерминируется начальным «расколом направления спирали», который происходит прежде, чем собственная ДНК эмбриона начала работать (Cohen 1977).

Эффекты такого рода обеспечивают специфические возможности для материнской манипуляции потомством, обсуждавшейся нами в главе 4. Говоря шире, это – особый пример «дальнодействия гена». Этот пример иллюстрирует в особенно ясной и простой манере, что власть гена может простираться за границы тела, в клетках которого он находится (Haldane 1932b). Нельзя надеяться, что всё генетическое дальнодействие проявит себя в столь изящной менделевской манере как в случае с улитками. Также как и в обычной генетике, менделевские основные гены, служащие парадным примером – лишь верхушка айсберга. О реальности полигенетической «расширенной генетики» мы можем только догадываться; о генетике, в которой дальнодействие гена широко распространено, но в которой эффекты генов столь сложны и запутаны, и в них так трудно разобраться, что об этом можно только мечтать. Опять же – как и в обычной генетике, нам не нужно обязательно проводить генетические эксперименты, чтобы установить наличие генетического влияния на вариации признаков. Как только мы убедились, что данная характеристика является дарвиновской адаптацией, так это само по себе должно рассеять сомнения в том, что вариации в этой характеристике должны были в своё время иметь генетические основания. Если бы это было не так, то отбор не смог бы сохранить выгодную адаптацию в популяции.

Существует напоминающее адаптацию явление, которое в некотором смысле является дальнодействием – это «эффект Брюса». Он состоит в том, что беременность самки мыши, кто только что осеменённой одним самцом, может блокироваться запахом мочи второго самца. Похожий эффект имеет место в природе у разных видов мышей и полёвок. Швагмайер (1980) рассматривает три главных гипотезы об адаптивном значении эффекта Брюса, но ради дискуссии я не буду здесь защищать гипотезу, которую Швагмейер приписывает мне – о том, что эффект Брюса является своего рода женской адаптацией[30] 30

И только ради дискуссии; нижерассмотренная гипотеза о самцовой адаптации вряд ли правильна, но для иллюстрации принципов «расширенной генетики» её временно можно принять – А.П.


[Закрыть]. Вместо этого я взгляну на него с точки зрения самца, и просто предположу, что второму самцу выгодно предотвращать беременность самки, тем самым и устраняется потомство конкурирующего самца, и одновременно самка быстро приводится в состояние течки, чтобы он мог спариться с нею сам.

Я сформулировал гипотезу на языке главы 4 – языке межличностной манипуляции. Но её можно с равным успехом сформулировать на языке расширенного фенотипа и генетического дальнодействия. Гены в самцах мыши имеют фенотипическую экспрессию в самочьих телах в том же самом смысле, в каком гены в улитках – матерях имеют фенотипическую экспрессию в телах их детей. В случае с улиткой посредником дальнодействия была принята материнская транспортная РНК. В случае мыши, это очевидно мужской феромон. Моё мнение таково, что различие между этими двумя случаями не принципиально.

Посмотрим, как «расширенный генетик» мог бы рассуждать о генетической эволюции эффекта Брюса. Мутантный ген, который возник и существовал в теле самца мыши, имел фенотипическую экспрессию в телах самок мышей, с которыми он вошёл в контакт. Маршрут воздействия гена на его конечный фенотип был длинен и сложен, но не принципиально сложнее, чем маршруты обычного генетического действия в пределах тел. В обычной внутрителесной генетике, цепь причинной обусловленности, ведущей от гена к наблюдаемому фенотипу может иметь много стадий. Первая стадия – всегда РНК, вторая – белок. Этот белок второй стадии может быть как раз тем фенотипом, который интересует биохимика. Физиологи или анатомы будут пропускать фенотипы на большом числе промежуточных стадий, пока не остановятся на тех, что их интересуют. Они не будут интересоваться деталями этих предшествующих стадий, полагая их не требующими доказательств. Генетики всего организма найдут достаточным проделать эксперименты по скрещиванию, в которых они будут смотреть лишь на то, что для них является конечной стадией цепи – цвет глаз, курчавость волос, или что-то наподобие. Поведенческий генетик посмотрит на ещё более отдалённую стадию – пляски мышей, страсть к ползанию колюшек, гигиеническое поведение пчёл, и т.д. Он предпочитает расценивать поведенческий паттерн как конечную стадию цепи, зная при этом, что неправильное поведение мутанта вызвано, скажем, искажениями нейроанатомии, или искажениями в работе эндокринной системы. Он знает, что можно изучать тонкую анатомию нервной системы под микроскопом, и обнаружить эти мутации, но он вместо этого предпочитает смотреть на поведение (Brenner 1974). Он принял добровольное решение расценивать наблюдаемое поведение как конечное звено в цепи причинной обусловленности.

Каким бы ни было то звено в цепи, которую генетик пожелает полагать интересующим его «фенотипом», он знает, что это решение произвольно. Он мог бы выбрать как более раннюю стадию, так и более позднюю. Так изучающий генетику эффекта Брюса может анализировать феромоны самца биохимически, чтобы выявить вариации, на которых будет базироваться его генетическое исследование. Но он может взглянуть ближе к началу цепи, вплоть до полипептидных цепей, непосредственно порождающихся на интересующих его генах. Или он может рассмотреть более позднее звено цепи.

Что это за более позднее звено цепи, которое следует за самцовым феромоном? Это звено находится за пределами тела самца. Цепь причинной обусловленности простирается через промежуток, разделяющий тела самца и самки. Она проходит множество стадий в теле самки, и опять же – наш генетик не обязан утруждать себя деталями. Он выбирает – как ему удобно, окончание его концептуальной цепи в той точке, в которой ген вызывает блокировку беременности у самок. Это тот фенотипический продукт гена, который наиболее лёгок для проверок, и это как раз тот фенотип, который имеет прямое отношение к нему, как к изучающему адаптации в природе. Прерывание беременности у самок мышей, согласно этой гипотезе, является фенотипическим эффектом гена в самцах.

Тогда, как бы «расширенный генетик» изобразил эволюцию эффекта Брюса? Самцовый мутантный ген, заставляющий самок прерывать беременность (имеющий тем самым фенотипический эффект в самочьих телах), был одобрен естественным отбором в сравнении с его аллелям. Одобрен, потому что с повышенной вероятностью будет содержаться в телах потомков, вынашиваемых самками после блокирования её предыдущей беременности. Но следуя традициям главы 4, мы теперь предполагаем, что самки вряд ли бы стали подчинятся такой манипуляции без сопротивления, и здесь должна бы развиться своего рода гонка вооружений. На языке персональных преимуществ – отбор одобрил бы таких мутантных самок, которые сопротивлялись бы манипуляции феромонами самцов. Что бы «расширенный генетик» подумал об этом сопротивлении? Он привлёк бы концепцию гена-модификатора.

Чтобы освежить в памяти принцип, сначала ещё раз обратимся к обычной внутрителесной генетике, а потом перенесём этот принцип в царство расширенной генетики. Во внутрителесной генетике мы вполне привыкли к тому, что на вариации в одном фенотипическом признаке влияет больше чем один ген. Иногда удобно рассматривать один локус как обладателя «главного» влияния на признак, а другие – как обладателей «модифицирующих» эффектов. В других случаях ни один из локусов не преобладает над другими достаточно сильно, чтобы назваться главным. Все гены можно рассматривать как модификаторов друг друга. В главе о «мошенниках и модификаторах», мы видели, что два локуса, несущие один и тот же фенотипический признак, могут подвергаться противонаправленным давлениям отбора. Итогом их может быть тупиковая ситуация, компромисс, или прямая победа той или другой стороны. Дело в том, что обычная внутрителесная генетика уже привыкла к возможности противоположно направленного естественного отбора генов в различных локусах, несущих тот же самый фенотипический признак.

Приложим это к сфере расширенной генетики. Интересующий нас фенотипический признак – прерывание беременности у самок мышей. Гены, несущие его, без сомнения включают набор генов в теле самой самки, а также другой набор генов в теле самца. Со стороны самца – цепь влияния его генов включает феромональное дальнодействие, из-за чего может показаться, что влияние мужских генов очень косвенно. Но причинные цепочки самочьих генов вероятно будут почти столь же косвены, хотя они не выходят за пределы её тела. Вероятно они используют различные химические секреты, циркулирующие в её кровотоке, Самцовые гены вдобавок используют химические секреты, циркулирующие в воздухе. Суть в том, что оба набора генов, пусть через длинные и косвенные причинные связи, контролируют один фенотипический признак – прерывание беременности у самки, и любой из этих наборов генов можно расценить как модификатор другого набора; равно как одни гены в каждом наборе могут быть расценены как модификаторы других генов того же самого набора.

Самцовые гены влияют на самочий фенотип. Самочьи гены влияют на самочий фенотип, и также модифицируют влияние самцовых генов. И как мы знаем, самочьи гены влияют на самцовый фенотип своим противодействием его манипуляции, в результате чего следует ожидать отбор модификаторов среди самцовых генов.

Всю эту историю можно было бы рассказать на языке главы 4 – языке индивидуальных манипуляций. Язык расширенной генетики не выглядит однозначно лучшим. Это просто другой способ рассказывать о тех же самых вещах. Куб Неккера перещёлкнулся. Читатели должны решить для себя, нравится ли им это новое представление больше чем старое. Я полагаю, что тот способ, с помощью которого «расширенный генетик» рассказывает историю эффекта Брюса, изящнее и лаконичнее, чем тот, которым бы воспользовался обычный генетик. Оба генетика в принципе должны бороться с ужасно длинной и сложной цепью причинной обусловленности, ведущей от гена до фенотипа. Оба соглашаются с тем, что выбор ими конкретного звена цепи, который они будут называть интересующим их фенотипом (самые ранние звенья поручаются эмбриологу) – всегда произволен. Обычный генетик далее принимает произвольное решение отрезать все звенья в точке, где они достигают внешней границы тела.

Гены влияют на белки, и белки влияют на X, X влияет на Y, Y влияет на Z, Z… влияет на интересующий нас фенотипический признак. Но обычный генетик определяет понятие «фенотипический эффект» исходя из предположения, что и X, и Y и Z должны быть ограничены стенами одного индивидуального тела. Расширенный генетик признаёт такое отсечение произвольным, и весьма счастлив позволить своим X, Y и Z перепрыгивать промежуток между индивидуальными телами. Обычный генетик делает большой шаг по устранению пробела между клетками внутри тел. Например, красные кровяные тельца человека не имеют ядра, и должны экспрессировать фенотипы генов из других клеток. Так почему мы не можем – в подобающих случаях – задуматься об устранении пробела между клетками в различных телах? И что это за подобающий случай? Это любой случай, когда нам это удобно, и чаще всего будет любой из тех случаев, которые на обычном языке описывают манипуляцию одного организма другим. Расширенный генетик был бы конечно весьма рад переписать всю главу 4, утвердив свой пристальный взгляд на новом облике куба Неккера. Я пощажу читателя от такого переписывания, хотя это была бы интересная задача. Я не буду нагромождать пример на пример генетического дальнодействия, а обсужу и концепцию, и проблемы, которые при этом возникают, более обще.

В главе про гонки вооружений и манипуляции я сказал, что органы организма могли бы быть адаптированы для деятельности во благо генов другого организма, и добавил, что эту идею можно наполнить полноценным содержанием лишь ближе к концу книги. Я имел в виду, что полноценное содержание она может обрести лишь в терминах генетического дальнодействия. Итак, что имеется в виду под словами, что мускулы самки действуют во благо генов самца, или что органы родителя действуют во благо генов его потомства, или что органы тростниковой камышовки действуют во благо генов кукушки? Напомню – «центральная теорема» эгоистичного организма гласит, что поведение животного стремится максимизировать его личную (итоговую) приспособленность. Мы видели, что разговор о поведении особи, максимизирующей свою итоговую приспособленность, равносилен разговору о гене или генах этого поведенческого паттерна, максимизирующих своё выживание. Теперь мы видим, что в том же самом смысле, в каком можно вообще говорить о генах поведенческого паттерна одного организма, можно говорить о генах поведенческого паттерна (или иной фенотипической черты) для другого организма. Совмещая эти три вещи вместе, мы приходим к нашей собственной «центральной теореме» расширенного фенотипа: поведение животного стремится максимизировать выживание генов такого поведения, пусть даже эти гены возможно и не располагаются в теле конкретного животного, реализующего «сохраняющее гены» поведение.

И как далеко может простираться фенотип? Имеется ли какой-нибудь предел дальнодействия, будь то резкая граница, или обратная квадратическая зависимость? Наибольшее дальнодействие гена, которое существует в природе, имеет порядок в несколько миль – расстояние между наиболее удалёнными берегами бобровой запруды, которая является адаптацией для выживания генов бобра. Если бы бобровые запруды отпечатывались бы в окаменелостях геологических слоёв, то выстроив их в хронологическом порядке, мы возможно наблюдали бы тенденцию к увеличению площади водного зеркала. Увеличение площади было бы несомненно адаптацией, выработанной естественным отбором, из чего мы должны вывести заключение, что эволюционный тренд происходил посредством замен аллелей. В терминах расширенного фенотипа – аллели для больших запруд заменяли аллели меньших. В тех же самых терминах можно сказать, что бобры несут в себе гены, фенотипическая экспрессия которых простирается на много миль от самих генов.

Но почему не сотни и тысячи миль? Разве не может эктопаразит, оставаясь в Англии, вводить в ласточку какой-нибудь наркотик, который бы воздействовал на поведение этой ласточки по её прибытию в Африку, и результат его действия в Африке был бы расценен как фенотипическая экспрессия находящихся в Англии генов паразита? Логика расширенного фенотипа, казалось бы, должна быть благосклонна к этой идее, но я думаю, практически это маловероятно, по крайней мере – если мы говорим о фенотипической экспрессии как адаптации. Я усматриваю здесь критическое отличие практического характера от бобровой плотины. Ген бобра, который порождал большую запруду по сравнению с другими аллелями, может непосредственно приносить пользу себе с помощью этой запруды. Аллели, порождающие меньшие запруды, имеют меньшую вероятность выживания, как прямой результат меньшей величины экспрессии их фенотипов. Однако трудно представить, как может ген в английском эктопаразите приносить прямую пользу себе, в сравнении с его аллелями в Англии, в результате его фенотипической экспрессии в Африке. Африка, думаю слишком далека для того, чтобы последствия работы гена, с помощью какой-то обратной связи повлияли на благосостояние самого гена[31] 31

Автоматическая межпланетная станция «Вояджер-2» в настоящий момент отдалилась от Земли примерно на 12 000 000 000 км. Это чудовищное расстояние, представить которое человеческое воображение уже неспособно; оно в миллион раз больше поперечника Земли. Даже лучу света требуется на его преодоление более 11 часов. Однако! Будучи артефактом врождённого поискового поведения Homo Sapiens, «Вояджер» является адаптацией, ибо адаптивную ценность поискового поведения, слава богу, никто особо не оспаривает. Разумеется, вероятность того, что данный конкретный полёт непосредственно повлияет на выживание генофонда людей, к нему как-то причастных, очень невелика, но во-первых, она не равна строгому нулю, а во-вторых – косвенное влияние уже весьма вероятно, что позволяет вполне уверенно причислить этот «артефакт» к адаптациям, а – значит, считать «расширенным фенотипом» некоторой большой группы особей нашего вида – А.П.


[Закрыть].

По аналогичным причинам становится трудно расценивать как адаптацию дальнейшее (сверх определённого) увеличение размера запруды. Причина этого в том, очень большую запруду могут с равной вероятностью эксплуатировать иные бобры, чем строители плотины, извлекая тем самым выгоду дальнейшего увеличения размера в той же мере, что и сами строители запруды. Большое озеро приносит пользу всем бобрам в регионе – неважно, создали ли они это сами, или только нашли и эксплуатируют. Точно так же, даже если ген у английского животного и смог бы оказывать какой-то фенотипический эффект на Африку, и который непосредственно способствует выживанию гена этого животного, то другие английские животные того же вида почти наверняка будут извлекать выгоду в той же мере. Мы не должны забывать, что естественный отбор – это отбор относительного успеха.

По общему признанию, вполне возможно говорить о гене, как имеющем конкретную фенотипическую экспрессию даже тогда, когда его собственное выживание не зависит от этой экспрессии. В этом смысле ген в Англии действительно мог бы иметь фенотипическую экспрессию на отдалённом континенте, где его деятельность не скажется на его успехе в английском генофонде. Но я уже доказывал, что в мире расширенного фенотипа это малополезная тема для обсуждения. Я приводил пример следов в тине, как фенотипической экспрессии генов формы лапки, и высказал намерение использовать язык расширенного фенотипа только для случаев, когда интересующий нас признак мог бы с очевидностью влиять (позитивно или негативно), на успех репликации соответствующего гена (или генов).

При всей его невероятности, бывает полезно провести такой мысленный эксперимент, в котором действительно имело бы смысл рассматривать ген, фенотипическая экспрессия которого простиралась бы на другой континент. Ласточки каждый год возвращаются к одному и тому же гнезду.[32] 32

Не соответствует действительности. Процент возврата в район гнездования у береговой ласточки в Англии – только 31%, у деревенской ласточки в Швеции – 40%, в Нью-Йорке – 33%., см. Л.В.Соколов. Филопатрия и дисперсия птиц. Л.: Наука, 1991. Труды Зин. Т.230. Так что ежегодное возращение самца к своему гнезду – событие, происходящее реже случайного. – В.Ф.). (Но поскольку эксперимент мысленный, в котором «всё можно», то можно предположить, что нижеупомянутый наркотик, помимо прочего побуждает ласточку также и возвращаться в старое гнездо… – А.П.


[Закрыть]. Из этого следует, что эктопаразит, пребывая в состоянии спячки в гнезде ласточки в Англии, может рассчитывать встретить ту же самую ласточку и до, и после её путешествия в Африку. Если бы паразит смог изобрести какое-то изменение в поведении там, то смог бы действительно пожать его последствия по возвращению ласточки в Англию. Для примера предположим, что паразит нуждается в редком микроэлементе, которого нет в Англии, но который может содержаться в определённой африканской мухе. Ласточки обычно не выказывают никакого предпочтения этой мухе, но паразит, введя ласточке наркотик перед её путешествием в Африку, изменяет её пищевые предпочтения так, что вероятность поедания ею этой мухи увеличилась бы. В этом случае, тело возвратившейся в Англию ласточки будет содержать достаточное количество этого микроэлемента, чтобы принести пользу данному паразиту (или его потомкам) ожидающим хозяина в его родном гнезде, в сравнении с конкурентами того же вида паразита, использующими иную стратегию. Только при таких (или подобных) обстоятельствах я захотел бы говорить о гене на одном континенте, как имеющем фенотипическую экспрессию на другом континенте.

Здесь есть опасность, которую лучше предвосхитить. Такой разговор об адаптации в глобальном масштабе может вызывать в воображении читателя фешенебельный образ экологической «сети», крайним проявлением которого является гипотеза «Геи» Лавлока (1979). Моя сеть сцепленных расширенных фенотипических влияний лишь поверхностно подобна тем сетям мутуалистической зависимости и симбиоза, что в таком изобилии обрисованы в поп-экологической литературе (например, журнале «Эколог») и в книге Лавлока. Сравнение вряд ли бы более ввело в заблуждение. Поскольку гипотеза «Геи» Лавлока была с энтузиазмом поддержана таким учёным, как сам Маргулис (1981), и хвалебно названа Меланбаем (1979) работой гения, то её нельзя проигнорировать, и мне придётся отступить от темы, чтобы категорически отречься от какой-либо связи её с расширенным фенотипом.

Лавлок справедливо полагает гомеостатическое саморегулирование одним из характерных видов активности живых организмов, и это приводит его к смелой гипотезе обо всей Земле, как эквивалентной единому живому организму. Если уподобление Томасом (1974) Мира Живой клетке можно принять как свободное поэтизирование, то Лавлок принимает своё сравнение Земли с Организмом настолько серьёзно, что посвятил ему целую книгу. Он действительно имеет в виду именно это. Его объяснения природы атмосферы вполне характерны для его идей. В атмосфере Земли гораздо больше кислорода, чем в атмосферах сопоставимых планет. Уже давно общепризнанно, что по-видимому почти полностью ответственными за это высокое содержание кислорода являются зелёные растения. Большинство людей расценивает выработку кислорода как побочный продукт деятельности растений, что есть большая удача для нас, дышаших кислородом (также возможно, что мы были отчасти отселектированы для дыхания кислородом, ибо его так много вокруг…). Лавлок идет далее – он расценивает выработку кислорода растениями как адаптацию со стороны Землеорганизма или «Геи» (названной по имени греческой богини Земли): растения вырабатывают кислород, потому что это приносит пользу жизни на Земле в целом.

Он использует аналогичные аргументы в отношении других газов, наблюдающихся в малых количествах:

В чём тогда состоит назначение метана, и какое отношение он имеет к кислороду? Одна очевидная его функция состоит в поддержке целостности анаэробных зон его происхождения (с. 73).

Другой удивительный газ атмосферы – окись азота… Мы можем убедиться, что рациональная биосфера вряд ли станет тратить энергию, потребную на создание этого странного газа, если бы у него не было какой-то полезной функции. Два возможных применения приходят на ум… (с. 74).

Другой азотосодержащий газ, производимый в больших объемах в почве и в море и выпускаемый в атмосферу – аммиак… Как и в случае с метаном, биосфера затрачивает много энергии на создание аммиака, который сейчас имеет полностью биологическое происхождение. Его функция – почти однозначно состоит в управлении кислотностью окружающей среды… (с. 77).

По гипотезе Лавлока моментально пробежала бы смертоносная трещина, если б он задался вопросом об уровне естественного селекционного процесса, на котором потребовалось вырабатывать предполагаемую адаптацию Земли. Гомеостатические адаптации в отдельных телах развиваются потому, что индивидуумы с улучшенным гомеостатическим аппаратом передают свои гены в будущее более эффективно, чем таковые с несовершенным. Если проводить аналогию строго, то должен существовать набор конкурентов Геи, возможно на других планетах. Биосферы, не развившие эффективного гомеостатического регулирования своих планетарных атмосфер, постепенно бы вымирали. Вселенная должна была бы быть наполнена мёртвыми планетами, гомеостатические системы которых были бы неудачны, с вкраплениями немногих успешных, хорошо зарегулированных планет, среди которых – Земля. Впрочем даже этот невероятный сценарий недостаточен, чтобы привести к эволюции планетарной адаптации, какую предлагает Лавлок. Сверх этого мы были бы должны постулировать какое-то воспроизводство, посредством которого успешные планеты порождали бы копии их форм жизни на новых планетах.

Я конечно не предполагаю, что Лавлок верит в существование подобных процессов. Не сомневаюсь, что он расценил бы идею межпланетного отбора столь же смехотворной, как и я[33] 33

Идея не так уж и смехотворна. К примеру, зачаток «механизма репликации» можно усмотреть в вышеупомянутой АМС «Вояджер». Искусственная панспермия (в отличие от «естественной») не так уж и фантастична, и она может быть продуктом именно такой, очень хорошо отрегулированной биосферы. С другой стороны верно – с такой скоростью «репликации» вряд ли возможно какое-то подобие «естественного отбора» на космическом уровне – процессу не даст полноценно развиться конечность времени существования звёзд – А.П.


[Закрыть]. Очевидно он просто не видел в своей гипотезе содержащихся в ней скрытых предположений, которые, думаю, вытекают из неё. Он мог бы оспаривать посылки, могущие повлечь эти предположения, и утверждать, что Гея могла бы развивать её глобальную адаптацию в ходе процессов обычного дарвиновского отбора, действующего в пределах одной планеты. Я очень сомневаюсь, что работоспособная модель такого процесса отбора могла быть создана – у неё были бы все печально известные трудности «группового отбора». Например, если растения (как предполагается) производят кислород для блага биосферы, то представьте себе мутантное растение, которое экономило бы на издержках производства кислорода. Очевидно, оно было бы репродуктивно успешнее своих более патриотически настроенных коллег, и гены глобальной солидарности вскоре исчезли б. Нет смысла возражать, что продукция кислорода не должна требовать затрат – если оно не требует затрат, то наиболее рациональным объяснением продукции кислорода растениями было бы такое, какое научный мир принимает и так – что кислород – побочный продукт кое-чего, что растения производят для их собственного эгоистичного блага. Я не отрицаю, что кто-нибудь сможет однажды создать работоспособную модель эволюции Геи (возможно по линии нижеописанной «модели-2»), хотя я лично сомневаюсь в этом. Но если даже у Лавлока и есть такая модель в уме, то он не упоминает о ней. Собственно, он не делает никаких намёков на то, что здесь имеется трудная проблема.

Гипотеза Геи – это чрезвычайная форма того, что я, ради былых времён (хотя ныне это довольно несправедливо), продолжаю называть «Теоремой Би-Би-Си». Британскую радиовещательную корпорацию справедливо хвалят за превосходные фотографии природы, и обычно связывают эти замечательные визуальные изображения с серьёзными комментариями. Сейчас многое изменилось, но долгие годы доминирующая мысль этих комментариев вращалась вокруг доктрины, вознесённой почти до уровня религии – доктрины «поп-экологии». В её основе было нечто, называемое «балансом природы» – изящно скроенным механизмом, в который растения, травоядные, плотоядные, паразиты, и мусорщики – все играют свою назначенную им роль во имя блага всех. Единственным, кто угрожал этой изящной экологической фарфоровой лавке, был бесчувственный бык человеческого прогресса, бульдозер оного…, и т.д. Нашему миру нужны терпеливые чернорабочие – жуки-копрофаги, и другие мусорщики, ибо без их самоотверженных усилий как санитаров мира…, и т.д. травоядным нужны их хищники, ибо без них их численность вышла бы из-под контроля, и стала бы угрожать им исчезновением, аналогично популяция человека исчезнет, если…, и т.д. Теорема Би-Би-Си часто формулируется в терминах поэзии тканей и сетей. Весь мир – тонко вытканная сеть взаимосвязей, ткань взаимодействий, на создание которой требуются тысячи лет, и горе постигнет человечество, если оно порвёт её…, и т.д.

Без сомнения, есть много достойного в моралистических проповедях, которые следуют из теоремы Би-Би-Си, но это не означает, что её теоретическое обоснование верно. Его слабость та же, что и у уже упомянутой гипотезы Геи. Сеть взаимоотношений – почему бы и нет, но она сплетена из маленьких и корыстных компонентов. Объекты, несущие издержки содействия благосостоянию экосистемы в целом, будут воспроизводить себя в среднем неуспешнее конкурентов, эксплуатирующие своих патриотически настроенных коллег, но не вносящих ничего в общее благосостояние. Хардин (1968) резюмировал проблему в его незабываемой фразе «трагедия общин», и в более свежем афоризме (Hardin 1978), «Хорошие парни финишируют последними».

Я занялся теоремой Би-Би-Си и гипотезой Геи из-за опасений, что мой собственный язык расширенного фенотипа и дальнодействия может выглядеть похожим на некоторые из ещё более расширенных сетей и тканей телевизионных «экологов». Чтобы подчеркнуть различие, позвольте мне позаимствовать риторику тканей и сетей, но применяя её совершенно иначе, объяснить идею расширенного фенотипа и генетического дальнодействия.

Локусы в хромосомах зародышевой линии – жадно оспариваемые объекты собственности. Соперники – аллеломорфные репликаторы. Большинство репликаторов в мире выиграло своё место в локусе, нанеся поражение всем доступным альтернативным аллелям, просто вытеснив их оттуда. Оружие, которым они победили, и оружие, с которым их конкуренты проиграли – соответствующие фенотипические эффекты первых и вторых. Фенотипические эффекты по традиции принято ограничивать маленькой областью вокруг самого репликатора, границы которой определяются стеной тела индивидуального организма, в клетках которого репликатор находится. Но характер причинного влияния гена на фенотип таков, что не имеет смысла ограничивать зону влияния столь произвольным образом, более произвольным, чем ограниченность клеточной биохимией. Мы должны рассматривать каждый репликатор как центр поля влияния на мир в целом. Причинное влияние истекает из репликатора, но его сила не угасает на расстоянии согласно какому-то простому математическому закону. Он суёт свой нос всюду, куда только может – далеко или близко, по доступным направлениям, направлениям внутриклеточной биохимии, межклеточного химического и физического взаимодействия, формируя целиком макрофизиологию. Посредством разнообразных физических и химических носителей он исходит наружу из индивидуального тела, чтобы коснуться объектов во внешнем мире, неодушевленных изделий, и даже других живых организмов.

Также как каждый ген – центр излучающего поля влияния на мир, так и каждый фенотипический признак – центр сходящихся влияний многих генов, как внутри, так и вне тела индивидуального организма. Вся биосфера – признаю поверхностное сходство с теоремой Би-Би-Си – целый мир растительной и животной материи, взаимоперекрещивающейся запутанной сети из полей генетического влияния, сеть фенотипической силы. Мысленно слышу телевизионный комментарий: «Представьте себя уменьшенным до размеров митохондрии, располагающимися в удобной точке обзора на внешней стороне ядерной мембраны человеческой зиготы. Смотрите как текут в цитоплазму миллионы молекул транспортной РНК, с поручениями по игре фенотипической пьесы. Затем увеличьтесь до размеров клетки в развивающемся зачатке органа эмбриона цыпленка. Почувствуйте струи химических индукторов, как они катятся вниз по нежным склонам их аксиальных градиентов! Затем увеличьтесь снова до вашего полного размера, и встаньте посреди леса весной на рассвете. Пение птиц разливается вокруг вас. Сиринксы самцов изливают звуки видовых песен, и по всей лесной округе у самок набухают яичники. Это путь влияния в форме волн давления на открытом воздухе, а не в форме молекул в цитоплазме, но принципе тот же самый. На всех трёх уровнях этого мысленного эксперимента вы удостоены чести стоять посреди множества полей репликаторской силы».

Читатель должен заключить, что я хотел критиковать суть теоремы Би-Би-Си, а не её риторику! Однако более сдержанное красноречие часто более эффективно. Мастер сдержанного красноречия в биологических текстах – Эрнст Майр. Его глава «Единство генотипа» (Mayr 1963) часто поддерживала меня в беседе как глубокая антитеза моей репликаторо-ориентированной точки зрения. Сейчас я вдруг обнаружил, что восторженно подтверждаю почти каждое слово той главы, хотя как-то совсем в другом понимании.

Почти то же самое можно сказать об равно красноречивой статье Райта (1980), называющейся «генный и организменный отбор», в которой подразумевается отказ от генного взгляда на отбор – взгляда, которого я придерживаюсь, но я, тем не менее – согласен почти со всем в ней. Я думаю, что это ценная статья, даже притом, что её очевидная цель состоит в атаке на взгляд, предполагающий что «естественный отбор…именно ген, не индивид или группа является единицей оного». Райт заключает, что «ставка на организменный, а не просто генный отбор наиболее полно отвечает на одно из самых серьёзных возражений теории естественного отбора, с которыми сталкивался Дарвин». Он приписывает концепцию «генного отбора» Вильямсу, Мейнарду Смиту и мне, и прослеживает в прошлое к E. A. Фишеру, что, думаю, правильно. Каждый из перечисленных мог бы возглавить его, смутившись нижеследующей почестью Медавара (1981): «Наиболее важным отдельным новшеством в современном синтезе была тем не менее новая концепция, гласящая, что популяция, подвергающаяся эволюции, наилучшим образом должна быть рассмотрена как популяция фундаментальных реплицирующихся единиц – генов, а не популяция индивидуальных животных или клеток. Сьюэл Райт…был ведущим новатором этого нового мышления – родоначальником которого был Е. A. Фишер, важная, но меньшая фигура, никогда не простил его…».

В остальной части этой главы я надеюсь показать, что та версия «генного селекционизма», которая может быть атакована как наивно атомистическая и редукционистская – противник вымышленный, и совсем не то представление, которое я защищаю; если гены понимать правильно – как отселектированные за их способность сотрудничать с другими генами в генофонде, то мы приходим к теории генного отбора, которую Райт и Майр признают полностью совместимой с их собственными взглядами. Не только совместимой, но – заявляю – более верной, и яснее выражающей их взгляды. Я приведу ключевые отрывки из заключения главы Майра (сс. 295–296), показав, как их можно приспособить к миру расширенного фенотипа.

Фенотип – продукт гармоничного взаимодействия всех генов. Генотип – это «физиологическая команда» работая в которой, ген может вносить максимальный вклад в приспособленность, вырабатывая свой химический «генетический продукт» в необходимом количестве и в нужное время в ходе развития (Mayr 1963).

Расширенный фенотипический признак – продукт взаимодействия многих генов, чьё влияние проявляется как внутри, так и вне организма. Это взаимодействие не обязательно гармонично – но и внутри тел взаимодействия генов не обязательно гармоничны, как мы видели в главе 8. Гены, влияние которых сходятся на определённом фенотипическом признаке – «физиологическая команда» лишь в особом и изощрённом смысле, и это верно как для обычного взаимодействия внутри тела (которые имеет в виду Майр), так и для расширенных взаимодействий.

Ранее я пытался передать этот особый смысл метафорой команды гребцов (Докинз 1976a, сс. 91–92), и метафорой сотрудничества между близорукими и людьми с нормальным зрением (Докинз 1980, сс. 22–24). Принцип можно также назвать принципом Джека Спрата. Два индивидуума с комплементарными пищевыми пристрастиями – скажем, один предпочитает жирное, другой – постное, или с комплементарными навыками – скажем один – в выращивании пшеницы, а другой – в её размоле, формируют естественно гармоничные товарищества, которые можно расценить как единицы более высокого порядка. Интересный вопрос – как такие гармоничные единицы возникают. Я хочу указать на фундаментальное различие между двумя моделями селективных процессов; обе из них могут теоретически вести к гармоничному сотрудничеству и взаимодополнительности.

Первая модель привлекает отбор на уровне единиц высокого порядка: в метапопуляции из единиц высокого порядка, гармоничные единицы одобряются против негармоничных. Версия этой первой предложенной модели неявно имелась в гипотезе Геи – в том случае – отбор среди планет. Если спуститься на Землю – первая модель предполагает, что одни сообщества животных, у которых навыки сочленов взаимодополняли друг друга – скажем, содержащие, и фермеров, и мельников, выживали лучше групп, состоящих из одних фермеров, или из одних мельников. Вторую модель я полагаю более вероятной. В ней не требуется постулировать метапопуляций из групп. Она основана на том, что популяционные генетики называют частотно-зависимым отбором. Отбор идёт на низком уровне, уровне компонентов гармоничного комплекса. Компоненты в популяции одобрены отбором, если они оказываются гармонично взаимодействующими с другими компонентами, которые оказываются часты в популяции. В популяции, где господствуют мельники, отдельные фермеры процветают, в то время как в популяции, где господствуют фермеры, выгодно быть мельником.

Обе модели ведут к результату, который Майр назвал гармоничным и кооперативным. Но боюсь, что созерцание гармонии слишком часто ведет биологов к автоматическому принятию первой из них, и забвению правдоподобия второй. Это верно как в отношении генов в теле, так и в отношении сообщества фермеров и мельников. Генотип может быть «физиологической командой», но мы не должны полагать, что эта команда обязательно была отобрана как более гармоничная единица в сравнении с менее гармоничными конкурирующими единицами. Скорее так – каждый ген был отобран потому, что он процветал в своей окружающей среде, а эта окружающая среда обязательно включала другие гены, которые одновременно процветали в генофонде. Гены с комплементарными «навыками» процветают в присутствии любых других.

Что для генов значит комплементарность? Два гена можно назвать комплементарными, если выживание любого из них (относительно его аллелей) улучшается, когда другой избыточен в популяции. Наиболее очевидные условия такой взаимной помощи возникают тогда, когда эти два гена выполняют взаимно дополнительную функцию в телах, в которых они находятся вместе. Синтез химических биологически активных веществ часто зависит от цепи этапов на биохимическом маршруте, и на каждом из этих этапов действует определённый фермент. Полезность каждого из этих ферментов зависит от условия присутствия других ферментов в цепи. Генофонд, который обеспечивает генами избыток всех ферментов в данной цепи – кроме одного, может создавать давление отбора в пользу гена, кодирующего отсутствующее звено цепи. Если существуют альтернативные маршруты к этому же итоговому биохимическому продукту, то отбор может одобрить любой из них (но не оба) в зависимости от начальных условий. Чем рассматривать альтернативные маршруты как единицы отбора (модель 1), лучше рассуждать следующим образом (модель 2): отбор одобрит ген, производящий данный фермент в той мере, в какой гены, производящие другие ферменты на том же маршруте, уже избыточны в генофонде.

Но нам не нужно оставаться на биохимическом уровне. Представьте себе бабочек с полосками на крыльях, напоминающими складки коры дерева. У одних особей полоски поперечные, у других – в другом ареале – продольные; а различие между ними детерминировано одним генетическим локусом. Понятно, что бабочка будет хорошо замаскирована только тогда, когда она ориентируется в правильную сторону при посадке на кору дерева (Sargent 1969b). Предположим, что одни бабочки садятся вертикально, другие – горизонтально, и это поведенческое различие детерминировано вторым локусом. Наблюдатель обнаруживает, что к счастью все бабочки в одном ареале имеют продольные полосы и садятся вертикально, а в другом ареале все бабочки имеют поперечные полосы и садятся горизонтально. В этом случае мы могли бы сказать, что в обеих ареалах имеется «гармоничное сотрудничество» между генами, определяющими ориентацию полосок, и генами, определяющими ориентацию посадки. Как эта гармония возникла?

Снова мы привлекаем наши две модели. Модель-1 гласит, что негармоничные комбинации гена – поперечные полосы с вертикальной посадкой, или продольные полосы с горизонтальной посадкой вымерли, оставив лишь гармоничные комбинации гена. Модель-1 подразумевает отбор комбинаций генов. Модель-2, со своей стороны, подразумевает отбор генов на более низком уровне. Если, не важно по какой причине, в генофонде данного ареала стали преобладать гены поперечных полос, это автоматически создаст давление отбора в поведенческом локусе в пользу гена горизонтальной посадки. Что в свою очередь создаст давление отбора, увеличивающее преобладание генов поперечных полосы в локусе полосатости, который в свою очередь, усилит отбор в пользу горизонтальной посадки. Поэтому популяция будет быстро сходиться на эволюционно устойчивой комбинации поперечных полос и горизонтальной посадки. И наоборот, другой набор стартовых условий привёл бы популяцию к схождению на другом эволюционно устойчивом состоянии, продольных полосах и вертикальной посадке. Любая комбинация стартовых частот этих двух локусов будет в ходе отбора сходиться на том или другом из двух устойчивых состояний.

Модель-1 пригодна только в случае, если пары или наборы сотрудничающих генов будут особенно близки друг другу в телах; например если они близко сцеплены в «суперген» на одной хромосоме. Они действительно могут быть так сцеплены (Ford 1975), но модель-2 особенно интересна тем, что позволяет нам визуализировать эволюцию гармоничных генных комплексов без такого сцепления. В модели-2 сотрудничающие гены могут находиться на различных хромосомах, и частотно-зависимый отбор будет тем не менее вести популяцию к доминированию генов, гармонично взаимодействующих с другими генами в популяции, в ходе эволюции к одному или другому эволюционно стабильному состоянию (Lawlor & Мейнард Смит 1976). В принципе, те же самые рассуждения применимы к наборам трёх локусов (предположим, что полосы на задних крыльях управляются в другом локусе, чем на передних), четырёх локусах… N локусах. Если мы постараемся смоделировать взаимодействия в деталях, то математика будет трудной, но это не имеет значения для мысли, которую я хочу высказать. Я хочу сказать лишь то, что есть два общих способа возникновения гармоничного сотрудничества. Один способ – способ одобрения отбором гармоничных комплексов против негармоничных. Другой действует на отдельные части комплексов, которые будут одобряться в популяции в присутствии других частей, с которыми они будут гармонизироваться.

Использовав модель-2 для моделирования внутрителесной гармонизации генов (что имел в виду Майр), обобщим её теперь на межтелесный случай, на «расширенные» взаимодействия гена. Мы будем более говорить о генетическом взаимодействии на расстоянии, чем фенотипическом дальнодействии, которое было темой более ранней части этой главы. Это нетрудно, потому что частотно-зависимый отбор классически применялся к межтелесному взаимодействию, начиная с теории Фишера (1930a) о соотношении полов. Почему в популяциях имеется сбалансированное соотношение полов? Модель-1 предположила бы, что потому, что популяции с несбалансированным соотношением полов вымерли. Гипотеза самого Фишера, это конечно версия модели-2. Если в популяции происходит смещение равновесия соотношения полов, то отбор в этой популяции одобрит гены, восстанавливающие баланс. Нет никакой необходимости постулировать метапопуляцию популяций, как в случае с моделью-1.

Генетикам известны и другие примеры частотно-зависимых преимуществ (например Clarke 1979), и я уже обсудил их уместность для дискуссии о «гармоничном сотрудничестве» (Докинз 1980, сс. 22–24). Мысль, которую я хочу здесь подчеркнуть – что с точки зрения каждой реплицирующейся сущности, его отношения гармонии, сотрудничества и комплементарности в геномах в принципе не отличаются от соотношений между генами в различных геномах. Ген для вертикальной посадки на стволах дерева одобряется в генофонде, в котором оказалось много генов продольных полос, и наоборот. Здесь, как и в примере биохимической цепи ферментов, сотрудничество имеет место внутри тел: значимость того факта, что в генофонде много генов продольных полос, состоит в том, что любой данный ген в локусе, определяющем ориентацию посадки, с высокой статистической вероятностью будет «вертикальным». Я предполагаю, что нам следует прежде всего думать о генах, как отселектированных на фоне других генов, которые оказались частыми в генофонде, и только во вторую очередь делать различие между тем, имеют ли место существенные межгенетические взаимодействия в пределах тел или между ними.

Виклер (1988), в своём замечательном обзоре мимикрии животных, указывает, что индивидуумы иногда явно сотрудничают в достижении мимикрического подобия. Он пересказывает наблюдение Коенга о появлении морского анемона (актинии) в аквариуме. На следующий день там было два анемона, каждый из них был вдвое меньше первоначального, а ещё через день, изначально большой анемон очевидно воссоздал себя. Невозможность этого побудила Коенга к подробному исследованию, и он обнаружил, что «анемон» на деле был фальшивым, собранным из многочисленных сотрудничающих кольчатых червей. Каждый червь изображал одно щупальце, а все они сгруппировывались в круг в песке. Рыба явно была одурачена обманом настолько же, насколько сначала и Коенг, поскольку черви придали поддельному анемону тот же самый размер, как и реальному. Каждая особь червя возможно получала защиту от хищных рыб, участвуя в совместном мимикрическом кольце. Я предлагаю, что вряд ли полезно говорить о группах собирающихся в кольца червей, как отобранных в сравнении с группам, которые не собираются. Скорее всего, группирующиеся в кольца особи были одобрены в популяциях особей, уже собирающихся в кольца.

У различных видов насекомых, каждая особь подражает одному цветку многоцветковых соцветий, и поэтому для убедительно сымитированного соцветия необходима большая группа «сотрудников». «В Восточной Африке можно найти особое растение с чрезвычайно красивым соцветием… Отдельные цветы – приблизительно полсантиметра высоты, весьма похожи на цветы ракитника, и посажены вокруг вертикального стебля, подобно цветам люпина. Опытные ботаники приняли это растение за Tinnaea или Sesamopteris, но сорвав его, вдруг обнаружили в руках голый стебель! Цветок не осыпался – он улетел! “Цветок” состоял из цикад, или Ityraea gregorii или Oyarina nigriiarsus» (Wickler 1968, с. 61).

Чтобы рассуждать дальше, мне нужно сделать некоторые детальные предположения. Так как подробности давлений отбора, действующих на этот конкретный вид цикад не известны, то самым безопасным будет изобретение гипотетической цикады, которая изначально практикует ту же самую групповую мимикрию, как Ityraea и Oyarina. Я предполагаю, что мой вид имеется в двух цветовых морфах, розовой и голубой, и что эти две морфы подражают двум различным цветовым вариациям люпина. Принято, что розовый и голубой люпины одинаково обильны по всему ареалу распространения вида цикады, но в любой локальной области все цикады являются или розовыми или голубыми. «Сотрудничество» случается тогда, когда группа собирается вместе около кончиков стеблей растения, и вместе напоминает соцветие люпина. «Гармонии» в смешанных цветовых группах не получается: я предполагаю, что цвето-смешанная группа с особой вероятностью будет распознана хищниками как фальшивка, ибо у реального люпина не бывает двухцветных соцветий.

Вот как гармония могла бы возникнуть посредством частотно-зависимого отбора (модель-2). В любой данной области, исторический случай установил начальное преобладание в пользу одного или другого цветового типа. В тех областях, в которых оказались преобладающими розовые цикады, голубые наказывались отбором. В областях, в которых оказывались преобладающими голубые цикады, розовый также наказывался отбором. В обоих случаях – в немилости был находящийся в меньшинстве, потому что по законам статистики член меньшинства более вероятно оказывался в смешанной группе, чем член большинства. На уровне генов мы можем говорить, что розовые гены одобрены в генофонде с доминированием розовых генов, а голубые – в генофонде с доминированием голубых.

Мы теперь изобретём другое насекомое, скажем – гусеницу, которая достаточно велика, чтобы подражать всему соцветию люпина, а не отдельному цветку. Каждый сегмент гусеницы подражает отдельному цветку соцветия. Цвет каждой секции управляется отдельном локусе, и имеет для альтернативы – розовую и голубую. Гусеница, вся окрашенная в голубой или розовый, успешнее такой же, окрашенной смесью цветов, потому что – опять же, хищники поняли, что смеси цветов у люпина не бывает. Нет теоретических причин полагать, почему двухцветные гусеницы не могли бы появиться, но предполагать, что это произошло в результате отбора, нельзя: в любой области местные гусеницы являются или все розовыми или все голубыми. Мы снова имеем «гармоничное сотрудничество».

А здесь как могло возникнуть гармоничное сотрудничество? По определению, модель-1 была бы применима, только если гены, ответственные за окраску различных сегментов были бы сильно сцеплены в суперген[34] 34

Требование представляется неоправданно категоричным – А.П.


[Закрыть]. Разноцветные супергены были бы наказаны в пользу чисто розовых и голубых супергенов. Однако у нашего гипотетического вида, соответствующие гены широко разбросаны на разных хромосомах, и мы должны применить модель-2. В любой локальной области, когда-то один цвет изначально преобладал в большинстве локусов, и отбор работал чтобы увеличить частоту этого цвета во всех локусах. В конкретной области, если все локусы придерживаются розовых генов, эксцентричный локус, придерживающийся голубых генов, скоро будет подчинён общепринятому мнению отбором. Как и в случае гипотетических цикад, исторические случайности в различных локальных областях автоматически создают давления отбора в пользу одного из двух эволюционно стабильных состояний.

Суть этого мысленного эксперимента в том, что модель-2 равноприменима и внутри, и между особями. И в случае гусеницы, и случае цикады, розовые гены одобряются в генофондах, где уже преобладают розовые генов, а голубые – в генофондах с преобладанием голубых. У гусениц это происходит потому, что каждый ген извлекает выгоду, разделяя тело с другими генами, производящими тот же самый цвет как и он. У цикад это происходит потому, что каждый ген извлекает выгоду тогда, когда тело, в котором он находится, встречает другое тело, несущее ген, производящий тот же самый цвет как и он. В примере с гусеницей, сотрудничающие гены занимают различные локусы в той же самой особи. В примере с цикадой, сотрудничающие гены занимают один и тот же локус в разных особях. Моя цель состоит в том, чтобы закрыть концептуальный промежуток между этими двумя видами взаимодействия генов, показывая, что генетическое взаимодействие на расстоянии в принципе не отлично от генетического взаимодействия в пределах одного тела.

Возобновлю мою серию цитат Майра:

Результатом коадаптационной селекции является гармонично интегрированный комплекс генов. Совместная деятельность генов может иметь место на многих уровнях, таких как хромосомы, ядра, клетки, ткани, органы, и целые организмы.

У читателя в настоящее время не должно быть никаких трудностей в предположении, как список Майра должен быть продлён. Совместные действия генов в различных организмах существенно не отличаются от совместных действий генов в одном организме. Каждый ген работает в мире фенотипических последствий других генов. Какие-то из этих других генов будут членами того же самого генома. Другие – будут членами того же самого генофонда, действующего через другие тела. Третьи могут быть членами совсем других генофондов – других таксономических видов и типов.

Характер функциональных механизмов физиологического взаимодействия – (sic) лишь незначительно интересует эволюциониста, чья главная забота – жизнеспособность окончательного продукта, фенотипа.

Майр снова попадает в точку, но его «фенотип» – не окончательный: он может быть расширен за пределы индивидуального тела.

Много механизмов направлены на поддержку статуса-кво генофондов, количественно и качественно. Нижняя граница генетического разнообразия детерминирована частотным преимуществом гетерозиготности… Верхняя детерминирована тем фактом, что только те гены могут быть включены в геном, которые способны к гармоничной «коадаптации». Ни один ген не имеет абсолютной селективной ценности; один и тот же ген может придавать высокую приспособленность на одном генетическом фоне, и быть фактически смертельным на другом.

Превосходно! Но не забудем, что «генетический фон» может включать гены в других организмах точно также, как и гены данном организме.

Результат близкой взаимозависимости всех генов в генофонде – их плотное единство. Частота ни одного гена не может быть изменена, и ни один ген не может быть добавлен к генофонду, без влияния на генотип в целом, и таким образом, косвенно – на селективную ценность других генов.

Майр здесь сам изящно перешёл к разговору о коадаптированном генофонде, уходя от коадаптированного персонального генома. Это большой шаг в правильном направлении, но нам нужно сделать ещё один шаг в ту же сторону. Майр здесь говорит о взаимодействиях между всеми генами в одном генофонде независимо от тел, в которых они находятся. Доктрина расширенного фенотипа в конечном счёте требует, чтобы мы согласились бы тем же самый видом взаимодействий между генами различных генофондов, различных таксономических типов и царств.

Снова рассмотрим способы, которыми пара генов в одном генофонде может взаимодействовать; или более определённо – пути влияния частоты каждого из них в генофонде на перспективы выживания другой. Первый способ – тот, который, как я подозреваю Майр имел главным образом в виду – наличие общего тела. Перспективы выживания гена А находятся под влиянием частоты в популяции гена B, потому что частота В влияет на вероятность того, что А разделяет тело с B. Взаимодействие между локусами, определяющими направление полос бабочки и направление посадки было примером этого. Такова была гипотетическая мимикрирующаяся под люпин гусеница. Таковой была пара генов, кодирующая ферменты, необходимые для последовательных стадий на определённом маршруте синтеза полезного вещества. Назовём этот тип взаимодействия генов «внутрителесным».

Второй способ, которым частота гена B в популяции может затрагивать перспективы выживания гена А – «межтелесное» взаимодействие. Жизненное влияние здесь основано на вероятности, что любое тело, в котором находится А, встретит другое тело, в котором находится B. Мои гипотетические цикады являются примером этого. Такой же пример предоставляет теория соотношения полов Фишера. Как я подчеркнул, одна из моих целей в этой главе состоит в том, чтобы минимизировать различие между двумя видами взаимодействий генов, внутри– и межтелесного.

Но теперь рассмотрим взаимодействия между генами в различных генофондах и различных видах. Мы заметим, что имеется довольно небольшое различие между межвидовыми взаимодействиями генов, и внутривидовыми межтелесными взаимодействиями генов. Ни в том, ни в другом случае взаимодействующие гены не имеют общего тела. В обоих случаях перспективы выживания каждого могут зависеть от частоты другого гена в его собственном генофонде. Позвольте мне проиллюстрировать этот момент, снова используя мысленный эксперимент с люпином. Предположим, что имеется вид жука, который полиморфен подобно цикадам. Примем, что в некоторых областях розовые морфы обоих видов, и цикад и жуков, преобладают, а других – голубые морфы, опять же – обоих видов. Эти два вида отличаются по размеру тела. Они «сотрудничают» в фальсифицировании соцветий; меньшие по размеру цикады, предпочитают сидеть около кончиков стеблей, где логично ожидать маленькие цветы, а большие по размеру жуки предпочитают сидеть ближе к основанию каждого фальшивого соцветия. Объединённое «соцветие» жуков и цикад дурачит птиц более эффективно, чем одни жуки, или одни цикады.

Частотно-зависимый отбор модели-2 будет стремиться привести эволюцию к одному из двух эволюционно стабильных состояний точно так же, как и раньше, за исключением того, что теперь в процесс вовлечены два вида. Если исторический случай породит в одной локальной области преобладание розовых морф (любого вида), то отбор в обеих видах одобрит преобладание розовых морф над голубыми; и наоборот. Если жук относительно недавно появился в области, уже колонизированной цикадами, то направление отбора жуков будет зависеть от цвета локально преобладающей морфы цикад. Таким образом, будет иметь место частотно-зависимое взаимодействие между генами в двух различных генофондах, генофондах двух нескрещивающихся видов. В деле имитации соцветий люпина, цикады могли бы столь же эффективно сотрудничать с пауками[35] 35

Ну с пауками – вряд ли… – А.П.


[Закрыть] или улитками – как и с жуками или с цикадами другого вида. Модель-2 работает и между видами, и между типами, как и между особями и даже внутри особей.

И между царствами тоже. Рассмотрим взаимодействие между льном (Linum usiiissimum) и грибковой ржавчиной Melampsora lini, хотя это скорее антагонистическое, чем сотрудничающее взаимодействие. «Имеется по существу однозначное соответствие между определённой аллелью у гриба, и соответствующей аллелью у льна, управляющей сопротивлением этой аллели у гриба. Эта система “ген-против-гена” с тех пор была обнаружена у большого числа других видов растений… Модели взаимодействий ген-против-гена не сформулированы в терминах экологических параметров вследствие специфичности природы генетических систем. Это тот случай, когда генетические взаимодействия между видами могут быть поняты без ссылок на фенотипы. Модель системы ген-против-гена обязательно должна иметь межвидовую частотную зависимость… (Slatkin & Мейнард Смит 1979, сс. 255–256).

В этой главе (как в других), я использовал гипотетические мысленные эксперименты, дабы способствовать ясному пониманию. Но если они покажутся читателю слишком неправдоподобными, то позвольте мне снова обратиться к Виклеру за примером реальной цикады, которая проделывает нечто, как минимум столь же неправдоподобное как и мои изобретения. Ityraea nigrocincta, подобно I. gregorii, практикует совместную имитацию люпиноподобных соцветий, но она «обладает продвинутой особенностью, вытекающей из того, что оба её пола имеют две морфы, зелёную и жёлтую.[36] 36

Сейчас эти две формы сводятся в один вид, а I. gregorii сводят в синонимы к I.nogrocincta. – В.Ф.


[Закрыть]. Эти две морфы могут садиться вместе, причём зелёные формы стремятся сесть в верхней части стебля, особенно на вертикальных стеблях; жёлтые формы садятся ниже. В результате получается чрезвычайно убедительное “соцветие”, ибо настоящие цветы в соцветии часто раскрываются последовательно – снизу вверх; зелёные завязи всё ещё присутствуют на вершине, когда нижняя часть покрыта открытыми цветами» (Wickler 1968).

Эти три главы расширили концепцию фенотипической экспрессии генов лёгкими мазками. Мы начали с признания того, что даже в пределах тела есть много степеней дальнодействующего контроля гена над фенотипом. Для ядерного гена возможно проще управлять формой клетки, в которой он находится, чем управлять формой некоторой другой клетки, или всего тела, в котором эта клетка находится. Тем не менее, мы традиционно объединяем эти влияния вместе и называем их генетическим контролем фенотипа. Мой тезис состоял в том, что дальнейший концептуальный шаг за пределы данного тела является сравнительно небольшим. Однако он не банален, и поэтому я старался развивать идею постепенно, через неодушевленные изделия, к внутренним паразитам, управляющим поведением своих хозяев. От внутренних паразитов мы переместились (с помощью кукушек) к дальнодействию. В теории, генетическое дальнодействие может включать почти все взаимодействия между особями – как того же, так и другого вида. Живой мир можно рассматривать как сеть взаимодействующих полей власти репликаторов.

Мне трудно представить себе ту математику, которая в конечном счёте требуется для понимания деталей. Я довольно смутно вижу фенотипические признаки, которые в эволюционном пространстве растаскиваются в разных направлениях в ходе отбора репликаторов. Сущность моего подхода в том, что репликаторы тянущие любую данную фенотипическую особенность, будут иметь некоторое влияние как вне тела, так и внутри его. Какие-то из них будет тащить очевидно тяжелее, чем другие, так что вектор влияния будет иметь как переменный модуль, так и направление. Возможно, что теория гонок вооружений – «эффект редкого врага», «принцип жизни – обеда», и т.д. – будет играть важную роль формировании этих величин. Явная физическая близость будет вероятно тоже играть роль: представляется вероятным, что гены при прочих равных условиях, будут проявлять большую власть над близлежащими фенотипическими признаками, чем над отдалённым. Важный особый случай этого эффекта – клетки будут вероятно находиться под более мощным влиянием генов внутри них, чем генами внутри других клеток. То же самое справедливо и для тел. Но это будут количественные эффекты, сбалансированные с другими факторами из теории гонки вооружений. Иногда, скажем – из-за «эффекта редкого врага», гены в других телах могут проявлять большую власть над конкретными аспектам его фенотипа, чем «собственные» гены тела. Предчувствую, что почти все фенотипические признаки при рассмотрении обнаружат знаки компромисса между внутренними и внешними силами репликатора.

Идея конфликта и компромисса между многими давлениями отбора, действующими на данный фенотипический признак, конечно хорошо знакома из обычной биологии. Мы часто говорим например, о размере хвоста птицы, как адаптивном компромиссе между требованиями аэродинамики и требованиями сексуальной привлекательности, если самки предпочитают самцов с более длинными хвостами. Я не знаю, какая математика подойдёт для описания таких внутрителесных конфликтов и компромиссов, но в любом случае она должна быть обобщена на аналогичные проблемы генетического дальнодействия и расширенные фенотипы.

Но у меня нет крыльев, на которых я мог бы воспарить в математических сферах. Мне нужны устные сообщения от тех, кто изучает животных в поле. Какое изменение внесёт доктрина расширенного фенотипа в наше фактическое видение животных? Сейчас даже самые серьёзные полевые биологи подпишутся под теоремой (в основном – Гамильтона), гласящей, что животные будут вести себя так, чтобы максимизировать возможности выживания всех своих генов. Я уточнил эту теорему, придя к новой центральной теореме расширенного фенотипа: поведение животного направлено на максимизацию выживания генов «этого поведения», безотносительно к тому, находятся ли эти гены в теле данного животного, исполняющего данное поведение, или нет. Эти две теоремы были бы тождественны, если бы животные фенотипы всегда пребывали бы под чистым контролем своих собственных генотипов, и были бы неподвластны генами других организмов. Математическая теория, призванная обработать количественное взаимодействие противоречивых давлений, могла бы сделать возможно самое простое качественное заключение – поведение, которое мы рассматриваем, может быть, по крайней мере частично, адаптацией во благо выживания генов какого-то другого животного или растения. И потому может быть решительно неадекватно для организма, исполняющего это поведение.

Однажды, когда я пытался убедить коллегу в этом, а он был верным сторонником силы дарвиновского отбора, и хорошим полевым исследователем, – он подумал, что я опровергаю концепцию адаптации. Он предупреждал меня ещё и ещё, что люди сбрасывали со счетов определённые причуды поведения животного или детали его морфологии как бесфункциональные или неадекватные, а потом обнаруживали, что это не так. Он был прав. Но я говорил не об этом. Когда я говорю, что поведенческий паттерн неадекватен, я лишь подразумеваю, что он неадекватен для данного животного, исполняющего его. Я предполагаю, что особь, выполняющая поведение – не тот субъект, для которого это поведение является адаптивным. Адаптация приносит пользу генетическим репликаторам, ответственным за неё, и лишь случайно – вовлечённым в неё индивидуальным организмам.

На этом книгу можно было бы закончить. Мы расширили фенотип настолько далеко, насколько это возможно. Предшествующие три главы составили своего рода кульминацию, и мы могли бы быть довольны ими как завершением. Но я предпочитаю завершиться на второстепенном, чтобы начать пробуждать новое любопытство. Я признавался в начале книги что являюсь адвокатом, а для любого адвоката лёгкий путь подготовки почвы для его случая состоит в нападении на альтернативу. Поэтому перед защитой доктрины расширенного фенотипа активного репликатора зародышевой линии, я старался подорвать доверие читателя к индивидуальному организму как к единице адаптивной выгоды. Но теперь, когда мы уже обсудили сам расширенный фенотип, пришло время повторно открыть вопрос о существовании организма и его очевидной важности в иерархии жизни, и посмотреть, видим ли мы его насколько-то более ясно в свете расширенного фенотипа. Учитывая, что жизнь не обязана быть пакетирована в дискретные организмы, и допуская, что организмы – не всегда полностью дискретны, зададим вопрос: почему, тем не менее – активные репликаторы зародышевой линии так явно выбирают организменный способ существования?