воскресенье, 15 ноября 2009 г.

Расширенный фенотип Послесловие

Дэниел Деннетт



Почему философ пишет послесловие к этой книге? Расширенный фенотип – это наука или философия? И то, и другое; это конечно наука, но также и то, чем философия должна быть, но лишь периодически ею является: тщательно аргументированная дискуссия, которая открывает наши глаза на новые перспективы, разъясняющая то, что было темно и плохо понятно, и предоставляющая нам новый взгляд на предметы, которые мы полагали уже хорошо известными. Ричард Докинз говорит в начале, что «расширенный фенотип не может быть гипотезой, проверяемой самой по себе, он лишь меняет наш взгляд на животных и растения, и тем самым может подтолкнуть нас к проверяемым гипотезам, о которых мы иначе и не мечтали бы. Что это за новое мышление? Это не только “точка зрения гена” ставшая знаменитой благодаря книге Докинза “Эгоистичный Ген» (1978). Стоя на этом фундаменте, он показывает, как наш традиционный взгляд на организмы должен быть заменён на более богатое видение, в котором граница между организмом и окружающей средой сначала растворяется, а затем (частично) восстанавливается на более глубокой основе. «Я покажу, что обычная логика генетической терминологии неизбежно приводит к заключению, что гены могут считаться имеющими расширенные фенотипические эффекты – эффекты, которым не нужно экспрессироваться на уровне любого конкретного носителя». Докинз не провозглашает революций; он использует «обычную логику генетической терминологии» чтобы доказать, что поразительное значение биологии уже лежит в руках. Новая «центральная теорема»: «Поведение животного стремится максимизировать выживание генов “этого поведения”, безотносительно к тому, находятся ли эти гены в теле данного животного, исполняющего его». Более ранняя разъясняющая рекомендация Докинза биологам принять «точку зрения гена», не подавалась как революция, а скорее как разъяснение по смещению внимания, которое уже начало распространяться в биологии в 1976 году. Более раннюю идею Докинза так нервозно и неконструктивно критиковали, что многие непрофессионалы и даже некоторые биологи оказывались не в состоянии оценить, насколько плодотворным было это смещение внимания. Мы теперь знаем, что геном, такой как человеческий, включает и подчиняется механизмам захватывающей дух хитрости и изобретательности – в нём не только молекулярные копировщики и редакторы, но также мошенники и стражи, призванные сразиться с ними, гувернантки и бродячие артисты, защитники от рэкета, наркоманов и других нечестных нано-агентов, из тех, чьи роботизированные конфликты и защиты появляются чудеса видимой природы. Плоды этого нового видения простираются далеко за пределы почти ежедневных заголовков новостей о нанесении ударов новых открытий то на одну частичку ДНК, то на другую. Почему и как мы стареем? Почему мы заболеваем? Как работает HIV? Как нейроны соединяются между собой в ходе эмбрионального развития мозга? Можем ли мы использовать паразитов вместо ядов для контроля за сельскохозяйственными вредителями? При каких условиях сотрудничество не только возможно, но и с высокой вероятностью возникнет и сохраняется? Все эти жизненные вопросы, как и многие другие, освещаются переосмыслением проблем в терминах процессов, описывающих возможности для репликаторов реплицироваться, и связанных с этим издержек и выгод.

Докинз как философ – прежде всего обеспокоен логикой объяснений, которые мы предлагаем для объяснения этих процессов и предсказания результатов. Но это научные объяснения, и Докинз (как и многие другие) хочет показать, что их смысл – есть научный результат, а не только убеждения интересной и оправдываемой философии. Так как ставки велики, то нам нужно убедиться, что это хорошая наука, и для этого мы должны проверить логику в полях, где собираются данные, где детали имеют значение, где даже весьма мелкая гипотеза об исследуемом феномене может быть практически проверена. «Эгоистичный ген» был написан для образованных непрофессиональных читателей, и лишь вскользь прошёлся по многим запутанным и техническим вопросам, которые для надлежащей научной оценки требовалось рассмотреть подробно. «Расширенный фенотип» был написан для профессионального биолога, но стиль Докинза столь изящен и ясен, что даже посторонние люди, готовые к энергичному использованию своих умственных способностей, могут легко следовать за аргументацией, и оценивать изящество выводов.

Как профессиональный философ, я не могу устоять от удовольствия добавить, что в книге есть несколько самых мастерских, выдержанных цепочек строгих доказательств, с которым я когда-либо сталкивался (глава 5, и последние четыре главы), множество изобретательных и ярких мысленных экспериментов. Здесь есть даже несколько побочных, но существенных вкладов в философские споры, которых трудно было ожидать от Докинза. Например, мысленный эксперимент о генетическом контроле сбора грунта термитами, может обеспечить полезное понимание теорий «умышленности» – особенно в дебатах, которые у меня были с Fodor, Dretske, и другими, относительно условий, при которых контент может быть приписан механистичности. На философском жаргоне – в генетике господствует чистая эксистенциональность, и это делает любое обозначение фенотипических черт «вопросом произвольного удобства», но не снижает по этой причине мотивированности нашей заинтересованности в привлечении внимания к большинству фактических сообщений о ситуации.

Для учёного здесь есть множество проверяемых предсказаний – о таких разнообразных вещах, как например, стратегии спаривания ос, эволюция объёма спермы, маскировочное поведение бабочек, и влияние паразитов на жуков и бокоплавов. Есть также свежие, ясные исследования проблем эволюции пола, условий внутригеномного конфликта (или геномных паразитов), и многих других, на первый взгляд противоречащих здравому смыслу вопросов. Его предостерегающий обзор ловушек, которых нужно избегать при размышлениях об эффекте зелёной бороды и его соседях должен быть настольной книгой любого, рискнувшего войти в эти запутанные дебри.

Эта книга была обязательным чтением любого серьёзного исследователя новой дарвинистской эволюционной теории уже в момент её первого появления в 1982; но один из поразительных эффектов от перечитывания её сегодня состоит в том, что она показывает ретроспективный снимок критики ледникового периода. Стивен Джей Гулд и Ричард Левонтин в Соединенных Штатах, и Стивен Роз в Великобритании, долго предупреждали мир об угрозе «генетического детерминизма», который может породить Докинзовская биологическая «точка зрения гена», и здесь в главе 2, мы находим всю эту современную критику, уже умело опровергнутую. Можно было бы подумать, что за почти двадцать лет его противники найдут какую-нибудь новую сторону вопроса, какую-нибудь новую трещину, в которую они могли бы вбить разрушительный клин или два, но, как заметил Докинз в другом контексте, где не было никакого развития – «здесь очевидно нет никакой доступной вариации для дальнейшего совершенствования» в их размышлениях. Что самое интересное – когда возникает необходимость ответа вашим самым неистовым критикам, то достаточно просто переиздать то, что вы сказали на эту тему много лет назад!

Что это за такой жуткий «генетический детерминизм»? Докинз цитирует определение Гулда 1978 года: «Если мы запрограммированы на что-то, то эти черты неотвратимы. Мы можем в лучшем случае канализовать их, но мы не можем изменить их силой воли, образованием, или культурой». Но если это – генетический детерминизм (а я не видел серьезно пересмотренных определений у критиков), тогда Докинз – никакой не генетический детерминист (как и не E. O. Уилсон, или, насколько я знаю, никто из известных социобиологов или эволюционных психологов). Как показывает Докинз в безупречном философском анализе, вся идея об «угрозе» «генетических» (или любых других) детерминизмов – настолько плохо продумана теми, кто размахивает термином, что её следовало бы воспринимать как плохую шутку, если бы из неё не делали скандал. Докинз только не опровергает обвинения в главе 2, но он диагностирует вероятные источники путаницы, возбуждающие такие обвинения, и как он замечает: «имеется страстное рвение неправильно истолковывать»[41] 41

Страстность, полагаю, проистекает из прочности подсознательного креационизма людей, см. моё примечание в главе 2 – А.П.


[Закрыть]. Как это ни грустно, но он прав.

Не всякая критика нового дарвинизма столь «незаконнорожденная». Критики говорят, что адаптационистские рассуждения соблазнительны; слишком легко принять бездоказательный довод «так исторически сложилось» за серьёзный эволюционный аргумент. Это верно, но Докинз в этой книге снова и снова умело показывает аргументированные рассуждения, которые так или иначе изгоняют нечестность. В главе 3 Докинз высказывает исключительно важный тезис о том, что изменение в окружающей среде не может изменить лишь степень успешности фенотипического эффекта; оно может изменить фенотипический эффект в целом! Но хватит о стандарте; скучно ложно обвинение в том, что «точка зрения гена» будет игнорировать или недооценивать вклад изменений (включая «широкомасштабные») в селективной окружающей среде. Факт остаётся фактом – адаптационисты часто игнорируют эти (и другие) осложнения, почему собственно книга справедливо выступает с предупреждениями против поверхностных рассуждений адаптационистов.

Обвинение в «редукционизме» – другой стандартный ярлык, навешиваемый на идею «точки зрения гена», однозначно неадекватно, когда нацелено на Докинза. Далёкая от ослепительных чудес более высоких уровней объяснения, идея расширенного фенотипа расширяет свою власть, устраняя кособокие ложные концепции. Как говорит Докинз, она позволяет нам переоткрыть организм. Почему, если фенотипическим эффектам не нужно чтить границу между организмом и «внешним» миром, – вообще существуют многоклеточные организмы? Очень хороший вопрос, и мало кто задал бы его, – или задал бы очень серьёзно – если бы не предложенная Докинзом перспектива. Каждый из нас, гуляя каждый день по белу свету, несёт в себе ДНК нескольких тысяч линий (паразиты, кишечная флора) в дополнение к нашей ядерной (и митохондриальной) ДНК, и все эти геномы вполне преуспевают в большинстве случаев. В конце концов, все они путешествуют с нами в одной лодке. Стадо антилоп, колония термитов, спаривающаяся пара птиц и их кладка яиц, человеческое общество – эти групповые сущности не более групповые, чем – в конце концов, человеческий индивидуум, с его более чем триллионом клеток, каждая из которых – потомок союза клетки-мамы и клетки-папы, которые начали этот групповой вояж. «На любом уровне – все репликаторы внутри носителя будут разрушены, если сам носитель разрушен. Потому-то естественный отбор, по крайней мере – до некоторой степени, будет благоволить репликаторам, вынуждающим своего носителям сопротивляться разрушению. В принципе это может относиться к группам организмов также как и к отдельным организмам, ибо если группа разрушена, то все гены внутри неё разрушены тоже». Значит гены – это всё, что имеет значение? Вовсе нет. «Нет ничего магического в Дарвиновской приспособленности в генетическом смысле слова. Не существует закона, дающего приоритет приспособленности, как фундаментальному максимизирующемуся количеству… Мем имеет свои собственные возможности репликации, и свои собственные фенотипические эффекты, и нет причин как-то связывать успех мема с генетическим успехом».

Логика дарвиновского мышления не ограничена генами. Всё больше и больше мыслителей начинают оценивать это: эволюционные экономисты, эволюционные этики, другие специалисты социальных наук, и даже физики и деятели искусства. Я воспринимаю это как философское открытие, и бесспорно ошеломляющее. Книга, которую вы держите в своих руках – один из лучших путеводителей по этому новому миру понимания.

Глоссарий
К книге Ричарда Докинза «Расширенный фенотип»

Термины даны в алфавитном порядке английских эквивалентов



Изначально эта книга предназначалась для биологов, которым не нужны никакие предметные глоссарии, но мне сказали, что хорошо бы растолковать ряд технических терминов, чтобы книга была доступнее для широкого читателя. Многие термины хорошо разъяснены в других местах (например, Уилсон 1975; Bodmer и Cavalli-Sforza 1976). Мои определения, конечно же, не улучшают уже имеющиеся, но я добавил личную оценку спорных слов или вопросов, прямо относящихся к предмету этой книги. Я старался избежать загромождения глоссария излишними и явными перекрестными ссылками, но многие слова, используемые на определениях, будут иметь свои собственные определения в другом месте этого глоссария.



Адаптация – технический термин, который приобрёл значение, довольно далёкое от обычного, близкого к значению слова «модификация». Вместо значения вроде «крылья сверчка адаптировались (изменились исходя из их изначальной функции органа полёта) для пения» он стал означать что-то вроде «стали хорошо выполнять функцию пения». Адаптация стала означать что-то вроде некоего признака организма, который «хорош» для чего-то. Хорош в каком смысле? Хорош для чего или для кого? Это сложные вопросы, которые подробно обсуждаются в данной книге.



Аллели – (полная форма: аллеломорфы) Каждый ген может занимать только конкретное место в хромосоме, свой локус. В любом локусе в рамках популяции могут существовать альтернативные формы гена. Эти альтернативы и называются аллелями друг друга. В этой книге подчёркивается, что аллели, в определённом смысле являются конкурентами друг друга, так как в ходе эволюции успешные аллели достигают численного превосходства над другими в том же самом локусе и во всех хромосомах популяции.



Аллометрия – диспропорция между размерами части тела и размером всего тела, наблюдающаяся или от особи к особи, или в ходе жизни одной особи. Например, у больших муравьёв (но маленьких людей) головы стремятся иметь очень большие размеры относительно тела; голова растёт с иной скоростью, чем всё тело. Обычно принято относительный размер части тела связывать с развитостью функции, которую она выполняет.



Аллопатическая теория видообразования – широко распространённый взгляд на эволюцию, заключающийся в том, что эволюционное размежевание популяций на отдельные виды (более не скрещивающиеся между собой), имеет место в географически разделённых местностях. Альтернативная симпатическая теория испытывает трудности в объяснении того, как зарождающиеся виды могут разделиться, если они всё время имеют возможность скрещиваться друг с другом, и тем самым смешивать свои геномы.



Альтруизм – биологи используют этот термин в ограниченном (многие полагают – в извращённом) смысле, лишь внешне связанным с бытовым пониманием. Некое создание, к примеру – павиана или ген – называют альтруистичными, если его поведение (не намерение) способствует благу другого создания, в ущерб благу самого себя. Различные оттенки понимания «альтруизма» вытекают из различных интерпретаций понятия «благо». Эгоизм применяется в строго противоположном смысле.



Анафаза – фаза цикла деления клетки, в которой парные хромосомы расходятся. В мейозе происходят последовательно два деления и соответственно две анафазы.



Амизогамия – половая система, при которой в ходе оплодотворения сливаются гаметы разного размера – крупная (женская) и мелкая (мужская). Противоположная система – изогамия при которой в ходе оплодотворения сливаются гаметы одинакового размера.



Антитела – молекулы белка, вырабатываемые в ходе иммунной реакции животных и нейтрализующие вторгшиеся в организм инородные тела (антигены).



Антигены – инородные тела, обычно молекулы белка, вызывающие формирование антител.



Апосемантизм – явление отпугивания врагов яркими цветами, или аналогичными сильными стимулами, неприятными или опасными организмами вроде ос. Действие феномена, как предполагается, основано на лёгкости обучения врагов избеганию этих организмов, однако имеются (не-непреодолимые) теоретические трудности объяснения того, как феномен мог развиться первоначально.



Ассортативное скрещивание – стремление особей выбирать половых партнёров, похожих (позитивное ассоциативное спаривание или гомогамия) или явно не похожих (негативное ассоциативное спаривание) на них самих. Многие используют это слово только в смысле «позитивное»



Аутосома – хромосома, не входящая в число половых хромосом.



Болдуина/Уоддингтона эффект – впервые описан Сполдингом (Spalding) в 1873 году. По большей части гипотетический эволюционный процесс (называемый также генетической ассимиляцией), с помощью которого естественный отбор может создавать иллюзию наследования приобретенных признаков. Отбор в пользу генетической предрасположенности вырабатывать признаки в ответ на стимулы окружающей среды, ведёт к развитию увеличенной чувствительности к этим же стимулам окружающей среды, и возможному освобождению от потребности в них. В книге я предположил, что мы могли бы культивировать расу спонтанно продуцирующих молоко самцов, из поколения в поколение поддерживая самцов с женскими гормонами и отбирая особей с увеличенной чувствительность к женским гормонам. Роль гормонов, или других факторов среды, состоит в выявлении скрытых генетических вариаций, которые в противном случае пребывали бы в бездействии.



Центральная догма молекулярной биологии – представление о том, что нуклеиновые кислоты работают как шаблоны для синтеза белков, но никак не наоборот. Шире говоря, догма о том, что гены оказывают влияние на форму тела, но форма тела никогда не транслируется назад, в генетический код – приобретённые признаки не наследуются.



Хромосома – одна из цепочек генов, имеющихся в клетке. Кроме собственно ДНК, обычно также содержит сложную поддерживающую белковую структуру. Хромосомы становятся видимыми в световой микроскоп лишь в определённые фазы жизни клетки, но их количество и длина определяются из статистических соображений, вытекающих из одного уже факта наследования (см сцепление). Хромосомы обычно присутствуют во всех клетках тела, даже если в данной клетке активна их незначительная часть. Обычно имеются две половые хромосомы в каждой диплоидной клетке, и какое-то количество аутосом (у людей – 44).



Цистрон – один из вариантов определения гена. В молекулярной генетике цистрон имеет точное определение в терминах специального экспериментального теста. В более широкой трактовке он используется для указания на участок хромосомы, ответственной за кодирование одной цепочки аминокислот в белке.



Кодон – триплет из единиц генетического года (нуклеотидов), определяющий синтез одной единицы (аминокислоты) в молекуле белка.



Клон – в цитологии (биологии клеток) – набор генетически идентичных клеток, целиком происходящий от одной клетки-предка. Человеческое тело – гигантский клон, состоящий примерно из 1015клеток. Этим словом также обозначается набор организмов, все клетки которых – члены одного клона. Таким образом, пара однояйцевых близнецов может называться членами одного клона.



Копа правило – эмпирическое обобщение, полагающее, что в ходе эволюции размеры тел обычно возрастают.



Кроссинговер – сложный процесс обмена генетическими фрагментами[42] 42

Гомологичных – А.П.


[Закрыть] хромосом в ходе мейоза. Результат этой перестановки – почти бесконечное разнообразие гамет.



Д'Арси Томпсона преобразования – графическая техника, показывающая, как очертания одного животного могут быть преобразованы в очертания другого посредством особого математического алгоритма. Д'Арси Томпсон мог нарисовать одно из двух очертаний на обычной миллиметровке, затем показывал «как этот образ мог быть (с какой-то точностью) преобразован в другой, если систему координат исказить неким специфическим образом».



Диплоид – клетку называют диплоидной, если она имеет парный набор хромосом; у организмов с половым размножением – по одной от каждого родителя. Организм называют диплоидным, если все клетки его тела являются диплоидными. Большинство организмов с половым размножением являются диплоидными.



Доминантность – ген называют доминирующим над одной из его аллелей, если он подавляет фенотипические проявления другой (рецессивной) аллели, когда обе они находятся вместе. Например, карие глаза доминируют над голубыми, и только особи с обоими генами синих глаз (рецессивные гомозиготы) будут действительно голубоглазыми; те же особи, у которых один ген определяет синий цвет глаз, другой – карий (гетерозиготы) будут неотличимы от тех, кто имеет два гена карих глаз (доминантные гомозиготы). Доминантность может быть неполной; в этом случае гетерозиготы проявляют промежуточные признаки в фенотипе. Антипод доминантности – рецессивность. Доминантность/рецессивность – это свойство фенотипического эффекта но не гена как такового: данный ген может быть доминантным в одном из его фенотипических проявлений, и рецессивным – в другом (см. плейотропия).



Эпигенез – слово, связанное с длинной историей дискуссий в эмбриологии. В противоположность преформизму, эта доктрина полагает, что вся сложность организма возникает в процессе развития при взаимодействии генов и среды из относительно простой зиготы, но не детерминирована полностью свойствами яйцеклетки. Эта книга основана на идее (которую я одобряю), что генетический код – скорее средство достижения, чем проект. Иногда говорят, что различие между эпигенезом и преформизмом было ликвидировано современной молекулярной биологией. Я не согласен с этим и подчеркнул многие различия их в главе 9, где я настаиваю: эпигенез, но не преформизм, подразумевает, что эмбриональное развитие – процесс принципиально необратимый (см. центральная догма).



Эпистаз – класс взаимодействий между парами генов в их фенотипических эффектах. Технически их взаимодействие неаддитивно, что означает, грубо говоря то, что суммарный эффект работы этих двух генов не равен сумме их эффектов по отдельности. Например, один ген может маскировать эффекты другого. Этот термин используется, главным образом, в отношении генов в различных локусах, но некоторые авторы используют его также для описания взаимодействия между генами в одном локусе, при этом доминантность/рецессивность – особый случай. См. также доминантность.



Эукариоты – одна из двух основных групп организмов на Земле, включающая всех животных, растений, простейших и грибов. Характеризуется наличием клеточного ядра, и других заключённых в мембраны, клеточных органелл (аналогов «органов» внутри клетки) таких как митохондрии. Противопоставляются прокариотам. Различие между прокариотами и эукариотами гораздо фундаментальнее, чем между животными и растениями (не говоря уж о довольно незначительном различии между человеком и животными).



Эусоциальность – высший из известных энтомологам вид социальности насекомых. Характеризуется комплексом отличительных черт, наиболее важном из которых является наличие касты бесплодных «рабочих», помогающих размножаться своей долгоживущей матери – «царице». Обычно это явление ограничено относят к осам, пчелам, муравьям и термитам, но различные виды других животных также имеют ряд интересных признаков эусоциальности.



Эволюционно-стабильная стратегия (ESS) (Примечание: имеется в виду – вырабатываемая в ходе развития, но не присущая эволюции как таковой) – стратегия, выгодная популяции, преимущественно практикующей данную стратегию. Это определение схватывает интуитивную сущность идеи (см. главу 7), но не очень точно; математическое определение см у Мейнарда Смита, 1974.



Расширенный фенотип – все проявления гена в мире. Как обычно, «проявления» гена понимаются в свете сравнения с его аллелями. Обыкновенный фенотип – это частный случай расширенного, в котором проявления рассматриваются лишь в рамках одной особи – носителя этого гена. Практически удобно ограничить «расширенный фенотип» ситуациями, в которых проявления гена влияют на шансы выживания гена – как позитивно, так и негативно.



Приспособленность – технический термин, имеющий столь много запутанных значений, что я посвятил обсуждению его целую главу (глава 10).



Игр теория – математическая теория, изначально созданная для исследования человеческих игр, и далее обобщённая на экономику, военную стратегию, и эволюцию (в рамках теории эволюционно стабильных стратегий). Сфера теории игр – ситуации, в которых оптимальная стратегия не фиксирована, а зависит от стратегии, которая вероятнее всего принята соперником.



Гамета – одна из половых клеток, сливающихся в ходе полового оплодотворения. Сперматозоид и яйцеклетка являются гаметами.



Геммула – дискредитированная концепция, увлекшая Дарвина в его «пангенетической» теории о наследовании приобретённых характеристик – вероятно единственная серьёзная научная ошибка, когда-либо сделанная им, и пример «плюрализма» за который его недавно хвалили. Предполагалось, что геммула – это маленькая частица наследственности, приносящая информацию от всех частей в эмбриональную клетку.



Ген – единица наследственности. Для различных целей его можно определить различными способами. Молекулярные биологи обычно понимают ген как цистрон. Популяционные биологи иногда понимают его более абстрактно. Вслед за Вильямсом (1966, с. 24), я иногда использую термин «ген», подразумевая нечто, отделяющееся и рекомбинирующее с ощутимой частотой, и как «некую наследственную информацию, подвергающуюся благоприятному или неблагоприятному отбору на приспособленность при одно– или неоднократных его внутренних изменениях.



Генофонд – полный набор генов размножающейся популяции. Метафора, на основе которой предложен этот термин[43] 43

В оригинале – «пруд с генами» – А.П.


[Закрыть], хорошо подходит для этой книги, так как не акцентируется на бесспорном факте, что практически гены циркулируют в дискретных телах, и подчеркивает отношение к массиву генов, как к чему-то аморфному, вроде жидкости.



Генетический дрейф – изменения частот генов из поколения в поколение, обусловленное скорее случайностью, нежели отбором.



Геном – полный набор генов одного организма.



Генотип – генетическая конституция организма в конкретном локусе или наборе локусов. Иногда используется более широко, как полная генетическая копия фенотипа.



Генс (Гентс) – «раса» кукушек, паразитирующих на конкретном виде хозяина[44] 44

Расы отличаются формой и расцветкой яиц – А.П.


[Закрыть]. Различия между гентами должны быть генетическими, и они, как предполагается, находятся на Y хромосоме. Самцы птиц не имеют Y хромосом, поэтому не являются гентами. Термин явно неудачен, так как на латыни это слово относится к клану, имеющему общее происхождение по мужской линии.



Зародышевая линия – часть тела, являющаяся потенциально бессмертной в форме репродуктивных копий, а именно, генетический материал в гаметах и клетках, которые вырабатывают гаметы. Противопоставляется соме – смертной части тела, которая функционирует ради сохранения генов в зародышевой линии.



Градуализм – доктрина, полагающая эволюционные изменения постепенными, а не скачкообразными. В современной палеонтологии это предмет интересных дискуссий. Являются ли пробелы в последовательности окаменелостей артефактами, или они реально имели место? (см. главу 6). Журналисты раздули это псевдопротиворечие до сомнений в законности дарвинизма, который они называют градуалистической теорией. Верно то, что все нормальные дарвинисты – градуалисты в том смысле, что они не верят в скачкообразность появления очень сложных и поэтому статистически невероятных новых адаптаций, таких как глаз. Это именно то, что Дарвин понимал в афоризме «Природа не делает скачков». Но в пределах градуализма (в этом смысле), есть место для дискуссий о том, происходят ли эволюционные изменения гладко, или в мелких толчках, прерывающих длительные периоды стазиса. Это и есть предмет современных дискуссий, и он, даже отдалённо, никоим образом не несёт в себе сомнений в законности дарвинизма.



Групповой отбор – гипотетический процесс естественного отбора среди групп организмов. Часто привлекается для объяснения происхождения альтруизма. Иногда его путают с родственным отбором. В главе 6 я использую различие репликатора и носителя, чтобы отличить групповой отбор альтруистических черт от отбора видов, формирующих макроэволюционные тенденции.



Гаплодиплоид – генетическая система, при которой самцы выводятся из неоплодотворенных яйцеклеток и гаплоидны, а самки – из оплодотворённых, и диплоидны. Поэтому самцы не имеют отцов и сыновей. Самцы передают все свои гены дочерям, которые получают только половину генов от отцов. Гаплодиплоидность наблюдается у почти всех социальных и несоциальных перепончатокрылых (муравьи, пчёлы, осы, и т.д.), а также у некоторых клопов, жуков, клещей и коловраток. Проблемы, которые влечёт гаплодиплоидность своей близостью генетического родства, были изобретательно использованы в теориях эволюции эусоциальности у перепончатокрылых.



Гаплоид – клетку называют гаплоидной, если она содержит одинарный набор хромосом. Гаметы – гаплоидны, и когда они сливаются в ходе оплодотворения, то порождают диплоидную клетку. Некоторые организмы (например грибы и трутни) – состоят только из гаплоидных клеток, а потому называются гаплоидными организмами.



Гетерозиготность – состояние наличия неидентичных аллелей в хромосомном локусе. Обычно применяется к особи, и тогда имеются в виду две аллели в данном локусе. В более широкой трактовке может относиться к полной статистической разнородности аллелей, усреднённой по всем локусам особи или популяции.



Гомеотическая мутация – мутация, заставляющая одну часть тела развиваться в манере, присущей другой части. Например, гомеотическая мутация «antennopedia» у дрозофил заставляет ногу насекомого расти там, где обычно должна расти антенна. Это интересное явление, поскольку оно демонстрирует способность единственной мутации порождать изощрённые и сложные эффекты, но только тогда, когда уже имеется изначальная сложность, которую нужно только изменить.



Гомозиготность – состояние наличия идентичных аллелей в хромосомном локусе. Обычно применяется к особи, и тогда имеют в виду, что у особи – идентичные аллели в локусе. В более широкой трактовке термин может относиться к полной статистической однородности аллелей, усреднённой по всем локусам в особи или в популяции.



K – Отбор – отбор в пользу качеств, полезных для преуспевания в устойчивой, предсказуемой среде, где, вероятно, имеет место суровое соревнование между особями, хорошо приспособленными к жизни в популяциях большого размера, близкого к пределу ёмкости для данной среды, за ограниченные ресурсы. Среди этого разнообразия качеств (за которое, думаю, вы одобрите К-отбор) – такие как крупный размер тела, длинная жизнь, и небольшое число потомков, за коими производится тщательный уход. Противопоставляется r-отбору. 'K' и 'r' – это переменные обычного алгебраического уравнения в популяционной биологии.

Комментариев нет:

Отправить комментарий